10 research outputs found

    An architecture for adaptive task planning in support of IoT-based machine learning applications for disaster scenarios

    Get PDF
    The proliferation of the Internet of Things (IoT) in conjunction with edge computing has recently opened up several possibilities for several new applications. Typical examples are Unmanned Aerial Vehicles (UAV) that are deployed for rapid disaster response, photogrammetry, surveillance, and environmental monitoring. To support the flourishing development of Machine Learning assisted applications across all these networked applications, a common challenge is the provision of a persistent service, i.e., a service capable of consistently maintaining a high level of performance, facing possible failures. To address these service resilient challenges, we propose APRON, an edge solution for distributed and adaptive task planning management in a network of IoT devices, e.g., drones. Exploiting Jackson's network model, our architecture applies a novel planning strategy to better support control and monitoring operations while the states of the network evolve. To demonstrate the functionalities of our architecture, we also implemented a deep-learning based audio-recognition application using the APRON NorthBound interface, to detect human voices in challenged networks. The application's logic uses Transfer Learning to improve the audio classification accuracy and the runtime of the UAV-based rescue operations

    Owl: Congestion Control with Partially Invisible Networks via Reinforcement Learning

    Get PDF
    Years of research on transport protocols have not solved the tussle between in-network and end-to-end congestion control. This debate is due to the variance of conditions and assumptions in different network scenarios, e.g., cellular versus data center networks. Recently, the community has proposed a few transport protocols driven by machine learning, nonetheless limited to end-to-end approaches. In this paper, we present Owl, a transport protocol based on reinforcement learning, whose goal is to select the proper congestion window learning from end-to-end features and network signals, when available. We show that our solution converges to a fair resource allocation after the learning overhead. Our kernel implementation, deployed over emulated and large scale virtual network testbeds, outperforms all benchmark solutions based on end-to-end or in-network congestion control

    Supporting Sustainable Virtual Network Mutations with Mystique

    Get PDF
    The abiding attempt of automation has also permeated the networks, with the ability to measure, analyze, and control themselves in an automated manner, by reacting to changes in the environment (e.g., demand). When provided with these features, networks are often labeled as "self-driving" or "autonomous". In this regard, the provision and orchestration of physical or virtual resources are crucial for both Quality of Service (QoS) guarantees and cost management in the edge/cloud computing environment. To effectively manage the lifecycle of these resources, an auto-scaling mechanism is essential. However, traditional threshold-based and recent Machine Learning (ML)-based policies are often unable to address the soaring complexity of networks due to their centralized approach. By relying on multi-agent reinforcement learning, we propose Mystique, a solution that learns from the load on links to establish the minimal set of active network resources. As traffic demands ebb and flow, our adaptive and self-driving solution can scale up and down and also react to failures in a fully automated, flexible, and efficient manner. Our results demonstrate that the presented solution can reduce network energy consumption while providing an adequate service level, outperforming other benchmark auto-scaling approaches

    Partially Oblivious Congestion Control for the Internet via Reinforcement Learning

    Get PDF
    Despite years of research on transport protocols, the tussle between in-network and end-to-end congestion control has not been solved. This debate is due to the variance of conditions and assumptions in different network scenarios, e.g., cellular versus data center networks. Recently, the community has proposed a few transport protocols driven by machine learning, nonetheless limited to end-to-end approaches. In this paper, we present Owl, a transport protocol based on reinforcement learning, whose goal is to select the proper congestion window learning from end-to-end features and network signals, when available. We show that our solution converges to a fair resource allocation after the learning overhead. Our kernel implementation, deployed over emulated and large scale virtual network testbeds, outperforms all benchmark solutions based on end-to-end or in-network congestion control

    Ten golden rules for optimal antibiotic use in hospital settings: the WARNING call to action

    Get PDF
    Antibiotics are recognized widely for their benefits when used appropriately. However, they are often used inappropriately despite the importance of responsible use within good clinical practice. Effective antibiotic treatment is an essential component of universal healthcare, and it is a global responsibility to ensure appropriate use. Currently, pharmaceutical companies have little incentive to develop new antibiotics due to scientific, regulatory, and financial barriers, further emphasizing the importance of appropriate antibiotic use. To address this issue, the Global Alliance for Infections in Surgery established an international multidisciplinary task force of 295 experts from 115 countries with different backgrounds. The task force developed a position statement called WARNING (Worldwide Antimicrobial Resistance National/International Network Group) aimed at raising awareness of antimicrobial resistance and improving antibiotic prescribing practices worldwide. The statement outlined is 10 axioms, or “golden rules,” for the appropriate use of antibiotics that all healthcare workers should consistently adhere in clinical practice

    ADELE: An Architecture for Steering Traffic and Computations via Deep Learning in Challenged Edge Networks

    No full text
    Edge computing allows computationally intensive tasks to be offloaded to nearby (more) powerful servers, passing through an edge network. The goal of such offloading is to reduce data-intensive application response time or energy consumption, crucial constraints in mobile and IoT devices. In challenged networked scenarios, such as those deployed by first responders after a natural or man-made disaster, it is particularly difficult to achieve high levels of throughput due to scarce network conditions. In this paper, we present an architecture for traffic management that may use deep learning to support forwarding during task offloading in these challenging scenarios. In particular, our goal is to study if and when it is worth using deep learning to route traffic generated by microservices and offloading requests in these situations. Our design is different than classical approaches that use learning since we do not train for centralized routing decisions, but we let each router learn how to adapt to a lossy path without coordination, by merely using signals from standard performance-unaware protocols such as OSPF. Our results, obtained with a prototype and with simulations are encouraging, and uncover a few surprising results

    Impact of hard lockdown on interventional cardiology procedures in congenital heart disease: a survey on behalf of the Italian Society of Congenital Heart Disease

    No full text
    The Coronavirus disease 2019 (COVID-19) pandemic has thoroughly and deeply affected the provision of healthcare services worldwide. In order to limit the in-hospital infections and to redistribute the healthcare professionals, cardiac percutaneous intervention in Pediatric and Adult Congenital Heart Disease (ACHD) patients were limited to urgent or emergency ones. The aim of this article is to describe the impact of the COVID-19 pandemic on Pediatric and ACHD cath laboratory activity during the so-called 'hard lockdown' in Italy. Eleven out of 12 Italian institutions with a dedicated Invasive Cardiology Unit in Congenital Heart Disease actively participated in the survey. The interventional cardiology activity was reduced by more than 50% in 6 out of 11 centers. Adolescent and ACHD patients suffered the highest rate of reduction. There was an evident discrepancy in the management of the hard lockdown, irrespective of the number of COVID-19 positive cases registered, with a higher reduction in Southern Italy compared with the most affected regions (Lombardy, Piedmont, Veneto and Emilia Romagna). Although the pandemic was brilliantly addressed in most cases, we recognize the necessity for planning new, and hopefully homogeneous, strategies in order to be prepared for an upcoming new outbreak

    Correction to: Tocilizumab for patients with COVID-19 pneumonia. The single-arm TOCIVID-19 prospective trial

    No full text

    Ten golden rules for optimal antibiotic use in hospital settings : the WARNING call to action

    No full text
    Abstract: Antibiotics are recognized widely for their benefits when used appropriately. However, they are often used inappropriately despite the importance of responsible use within good clinical practice. Effective antibiotic treatment is an essential component of universal healthcare, and it is a global responsibility to ensure appropriate use. Currently, pharmaceutical companies have little incentive to develop new antibiotics due to scientific, regulatory, and financial barriers, further emphasizing the importance of appropriate antibiotic use. To address this issue, the Global Alliance for Infections in Surgery established an international multidisciplinary task force of 295 experts from 115 countries with different backgrounds. The task force developed a position statement called WARNING (Worldwide Antimicrobial Resistance National/International Network Group) aimed at raising awareness of antimicrobial resistance and improving antibiotic prescribing practices worldwide. The statement outlined is 10 axioms, or "golden rules," for the appropriate use of antibiotics that all healthcare workers should consistently adhere in clinical practice
    corecore