431 research outputs found
Exponential localization of hydrogen-like atoms in relativistic quantum electrodynamics
We consider two different models of a hydrogenic atom in a quantized
electromagnetic field that treat the electron relativistically. The first one
is a no-pair model in the free picture, the second one is given by the
semi-relativistic Pauli-Fierz Hamiltonian. We prove that the no-pair operator
is semi-bounded below and that its spectral subspaces corresponding to energies
below the ionization threshold are exponentially localized. Both results hold
true, for arbitrary values of the fine-structure constant, , and the
ultra-violet cut-off, , and for all nuclear charges less than the
critical charge without radiation field, . We obtain
similar results for the semi-relativistic Pauli-Fierz operator, again for all
values of and and for nuclear charges less than .Comment: 37 page
The Lazarus Project. II. Spacelike extraction with the quasi-Kinnersley tetrad
The Lazarus project was designed to make the most of limited 3D binary
black-hole simulations, through the identification of perturbations at late
times, and subsequent evolution of the Weyl scalar via the Teukolsky
formulation. Here we report on new developments, employing the concept of the
``quasi-Kinnersley'' (transverse) frame, valid in the full nonlinear regime, to
analyze late-time numerical spacetimes that should differ only slightly from
Kerr. This allows us to extract the essential information about the background
Kerr solution, and through this, to identify the radiation present. We
explicitly test this procedure with full numerical evolutions of Bowen-York
data for single spinning black holes, head-on and orbiting black holes near the
ISCO regime. These techniques can be compared with previous Lazarus results,
providing a measure of the numerical-tetrad errors intrinsic to the method, and
give as a by-product a more robust wave extraction method for numerical
relativity.Comment: 17 pages, 10 figures. Journal version with text changes, revised
figures. [Note updated version of original Lazarus paper (gr-qc/0104063)
Gravito-electromagnetic analogies
We reexamine and further develop different gravito-electromagnetic (GEM)
analogies found in the literature, and clarify the connection between them.
Special emphasis is placed in two exact physical analogies: the analogy based
on inertial fields from the so-called "1+3 formalism", and the analogy based on
tidal tensors. Both are reformulated, extended and generalized. We write in
both formalisms the Maxwell and the full exact Einstein field equations with
sources, plus the algebraic Bianchi identities, which are cast as the
source-free equations for the gravitational field. New results within each
approach are unveiled. The well known analogy between linearized gravity and
electromagnetism in Lorentz frames is obtained as a limiting case of the exact
ones. The formal analogies between the Maxwell and Weyl tensors are also
discussed, and, together with insight from the other approaches, used to
physically interpret gravitational radiation. The precise conditions under
which a similarity between gravity and electromagnetism occurs are discussed,
and we conclude by summarizing the main outcome of each approach.Comment: 60 pages, 2 figures. Improved version (compared to v2) with some
re-write, notation improvements and a new figure that match the published
version; expanded compared to the published version to include Secs. 2.3 and
Gravitomagnetism and the Clock Effect
The main theoretical aspects of gravitomagnetism are reviewed. It is shown
that the gravitomagnetic precession of a gyroscope is intimately connected with
the special temporal structure around a rotating mass that is revealed by the
gravitomagnetic clock effect. This remarkable effect, which involves the
difference in the proper periods of a standard clock in prograde and retrograde
circular geodesic orbits around a rotating mass, is discussed in detail. The
implications of this effect for the notion of ``inertial dragging'' in the
general theory of relativity are presented. The theory of the clock effect is
developed within the PPN framework and the possibility of measuring it via
spaceborne clocks is examined.Comment: 27 pages, LaTeX, submitted to Proc. Bad Honnef Meeting on: GYROS,
CLOCKS, AND INTERFEROMETERS: TESTING GENERAL RELATIVITY IN SPACE (22 - 27
August 1999; Bad Honnef, Germany
Theorems on shear-free perfect fluids with their Newtonian analogues
In this paper we provide fully covariant proofs of some theorems on
shear-free perfect fluids. In particular, we explicitly show that any
shear-free perfect fluid with the acceleration proportional to the vorticity
vector (including the simpler case of vanishing acceleration) must be either
non-expanding or non-rotating. We also show that these results are not
necessarily true in the Newtonian case, and present an explicit comparison of
shear-free dust in Newtonian and relativistic theories in order to see where
and why the differences appear.Comment: 23 pages, LaTeX. Submitted to GR
Catabolism of germinant amino acids is required to prevent premature spore germination in Bacillus subtilis
Spores of Bacillus subtilis germinate in response to specific germinant molecules that are recognized by receptors in the spore envelope. Germinants signal to the dormant spore that the environment can support vegetative growth, so many germinants, such as alanine and valine, are also essential metabolites. As such, they are also required to build the spore. Here we show that these germinants cause premature germination if they are still present at the latter stages of spore formation and beyond, but that B. subtilis metabolism is configured to prevent this: alanine and valine are catabolized and cleared from wild-type cultures even when alternative carbon and nitrogen sources are present. Alanine and valine accumulate in the spent media of mutants that are unable to catabolize these amino acids, and premature germination is pervasive. Premature germination does not occur if the germinant receptor that responds to alanine and valine is eliminated, or if wild-type strains that are able to catabolize and clear alanine and valine are also present in coculture. Our findings demonstrate that spore-forming bacteria must fine-tune the concentration of any metabolite that can also function as a germinant to a level that is high enough to allow for spore development to proceed, but not so high as to promote premature germination. These results indicate that germinant selection and metabolism are tightly linked, and suggest that germinant receptors evolve in tandem with the catabolic priorities of the spore-forming bacterium
The severity of pandemic H1N1 influenza in the United States, from April to July 2009: A Bayesian analysis
Background: Accurate measures of the severity of pandemic (H1N1) 2009 influenza (pH1N1) are needed to assess the likely impact of an anticipated resurgence in the autumn in the Northern Hemisphere. Severity has been difficult to measure because jurisdictions with large numbers of deaths and other severe outcomes have had too many cases to assess the total number with confidence. Also, detection of severe cases may be more likely, resulting in overestimation of the severity of an average case. We sought to estimate the probabilities that symptomatic infection would lead to hospitalization, ICU admission, and death by combining data from multiple sources. Methods and Findings: We used complementary data from two US cities: Milwaukee attempted to identify cases of medically attended infection whether or not they required hospitalization, while New York City focused on the identification of hospitalizations, intensive care admission or mechanical ventilation (hereafter, ICU), and deaths. New York data were used to estimate numerators for ICU and death, and two sources of data - medically attended cases in Milwaukee or self-reported influenza-like illness (ILI) in New York - were used to estimate ratios of symptomatic cases to hospitalizations. Combining these data with estimates of the fraction detected for each level of severity, we estimated the proportion of symptomatic patients who died (symptomatic case-fatality ratio, sCFR), required ICU (sCIR), and required hospitalization (sCHR), overall and by age category. Evidence, prior information, and associated uncertainty were analyzed in a Bayesian evidence synthesis framework. Using medically attended cases and estimates of the proportion of symptomatic cases medically attended, we estimated an sCFR of 0.048% (95% credible interval [CI] 0.026%-0.096%), sCIR of 0.239% (0.134%-0.458%), and sCHR of 1.44% (0.83%-2.64%). Using self-reported ILI, we obtained estimates approximately 7-96lower. sCFR and sCIR appear to be highest in persons aged 18 y and older, and lowest in children aged 5-17 y. sCHR appears to be lowest in persons aged 5-17; our data were too sparse to allow us to determine the group in which it was the highest. Conclusions: These estimates suggest that an autumn-winter pandemic wave of pH1N1 with comparable severity per case could lead to a number of deaths in the range from considerably below that associated with seasonal influenza to slightly higher, but with the greatest impact in children aged 0-4 and adults 18-64. These estimates of impact depend on assumptions about total incidence of infection and would be larger if incidence of symptomatic infection were higher or shifted toward adults, if viral virulence increased, or if suboptimal treatment resulted from stress on the health care system; numbers would decrease if the total proportion of the population symptomatically infected were lower than assumed.published_or_final_versio
The mass shell in the semi-relativistic Pauli-Fierz model
We consider the semi-relativistic Pauli-Fierz model for a single free
electron interacting with the quantized radiation field. Employing a variant of
Pizzo's iterative analytic perturbation theory we construct a sequence of
ground state eigenprojections of infra-red cutoff, dressing transformed fiber
Hamiltonians and prove its convergence, as the cutoff goes to zero. Its limit
is the ground state eigenprojection of a certain Hamiltonian unitarily
equivalent to a renormalized fiber Hamiltonian acting in a coherent state
representation space. The ground state energy is an exactly two-fold degenerate
eigenvalue of the renormalized Hamiltonian, while it is not an eigenvalue of
the original fiber Hamiltonian unless the total momentum is zero. These results
hold true, for total momenta inside a ball about zero of arbitrary radius p>0,
provided that the coupling constant is sufficiently small depending on p and
the ultra-violet cutoff. Along the way we prove twice continuous
differentiability and strict convexity of the ground state energy as a function
of the total momentum inside that ball.Comment: 44 page
X‐ray spectroscopy of hot solid density plasmas produced by subpicosecond high contrast laser pulses at 1018–1019 W/cm2
Analysis is presented of K‐shell spectra obtained from solid density plasmas produced by a high contrast (1010:1) subpicosecond laser pulse (0.5 μm) at 1018–1019 W/cm2. Stark broadening measurements of He‐like and Li‐like lines are used to infer the mean electron density at which emission takes place. The measurements indicate that there is an optimum condition to produce x‐ray emission at solid density for a given isoelectronic sequence, and that the window of optimum conditions to obtain simultaneously the shortest and the brightest x‐ray pulse at a given wavelength is relatively narrow. Lower intensity produces a short x‐ray pulse but low brightness. The x‐ray yield (and also the energy fraction in hot electrons) increases with the laser intensity, but above some laser intensity (1018 W/cm2 for Al) the plasma is overdriven: during the expansion, the plasma is still hot enough to emit, so that emission occurs at lower density and lasts much longer. Energy transport measurements indicate that approximately 6% of the laser energy is coupled to the target at 1018 W/cm2 (1% in thermal electrons with Te≊0.6 keV and 5% in suprathermal electrons with Th≊25 keV). At Iλ2=1018 W μm2/cm2 (no prepulse) around 1010 photons are emitted per laser shot, in 2π srd in cold Kα radiation (2–9 Å, depending on the target material) and up to 2×1011 photons are obtained in 2π srd with the unresolved transition array (UTA) emission from the Ta target. © 1995 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69900/2/PHPAEN-2-5-1702-1.pd
- …
