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The Lazarus project. II. Spacelike extraction with the quasi-Kinnersley tetrad

Manuela Campanelli, Bernard Kelly, and Carlos O. Lousto
Department of Physics and Astronomy, and Center for Gravitational Wave Astronomy, University of Texas at Brownsville,

80 Fort Brown, Brownsville, Texas 78520, USA
(Received 29 October 2005; published 3 March 2006)

The Lazarus project was designed to make the most of limited 3D binary black-hole simulations,
through the identification of perturbations at late times, and subsequent evolution of the Weyl scalar
�4 via the Teukolsky formulation. Here we report on new developments, employing the concept of the
‘‘quasi-Kinnersley’’ (transverse) frame, valid in the full nonlinear regime, to analyze late-time numerical
space-times that should differ only slightly from Kerr. This allows us to extract the essential information
about the background Kerr solution, and through this, to identify the radiation present. We explicitly test
this procedure with full-numerical evolutions of Bowen-York data for single spinning black holes, head-on
and orbiting black holes near the ISCO regime. These techniques can be compared with previous Lazarus
results, providing a measure of the numerical-tetrad errors intrinsic to the method, and giving as a by-
product a more robust wave extraction method for numerical elativity.

DOI: 10.1103/PhysRevD.73.064005 PACS numbers: 04.25.Dm, 04.25.Nx, 04.30.Db, 04.70.Bw

I. INTRODUCTION

The strong-field interaction of black-hole binary sys-
tems—from early approach through capture, mutual orbit
and eventual merger, to ring-down of the end-state single
hole—is expected to be a primary source of gravitational
radiation at all frequency scales, and has been a focus of
theoretical and numerical attention for 40 years. Early
perturbative studies [1–3] and two-dimensional numerical
evolutions of axisymmetric binaries (head-on collisions)
[4–9] were successful in producing late-stage waveforms
representing gravitational radiation. However, the move to
full 3D simulations of more general initial-data sets has
proved extremely difficult. Evolutions using the ‘‘standard
ADM’’ 3� 1 decomposition of Einstein’s equations and
simple zero-shift gauge conditions have stable lifetimes of
�15� 30M (whereM is the total mass of the space-time),
far too short a time to complete a useful physical simula-
tions, much less extract the gravitational radiation emit-
ted—the ultimate aim of numerical source simulations.

The Lazarus project [10,11] was conceived in the con-
text of such limitations. Working under the assumption that
the late-evolution 3� 1 data can be considered a perturba-
tion of a single Kerr black hole, Lazarus extracts the
radiation content everywhere in the numerical domain,
and uses it as initial data for a Teukolsky perturbative
evolution. In this manner, the original simulation may be
extended almost indefinitely, long enough to capture the
entire development of the outgoing radiation.

The beginning of the full-numerical simulation can also
be interfaced with a far limit approximation method and
similar techniques to evaluate a common regime of appli-
cability can be developed [11]. Here, for the sake of
definiteness, we will assume a set of initial data as provid-
ing this interface values and focus on the full-numerical/
close limit matching.

Lazarus has been very successful, producing the first
convergent waveforms [10,12–15] from 3D evolutions. In

most cases, a ‘‘plateau’’ was identified—a range of ex-
traction times T where the emitted energy remained flat
and consistent. This plateau begins when the 3� 1 data is
linearly perturbed from Kerr, and should end only when the
radiation has begun to leave the 3� 1 numerical domain
altogether; at this latter time, Teukolsky extraction will no
longer capture the full radiation content. However, the
numerical instability of the 3� 1 simulation may pollute
the Teukolsky initial data for late extraction times.
Somewhat surprisingly, such a plateau seems to exist
even in situations where a common apparent horizon has
yet to form, e.g., short-lived evolutions of so-called inner-
most stable circular orbit (ISCO)and ‘‘pre-ISCO’’ runs.

Meanwhile, great strides have been made in full 3D
simulations over the last decade, due to the casting of
Einstein’s equations into more numerically stable formu-
lations [16–28], the development of advanced techniques
for handling the singularities inherent in black-hole space-
times [22,29,30], and the availability of increased compu-
tational resources, coupled with mesh-refinement tech-
niques [31–36]. The culmination of these advances is
several successful evolutions of black-hole-binary systems
past the symbolic ‘‘one orbit’’ barrier [37,38]. For physical
systems requiring less than �100M of evolution time to
reach a quiescent final state, these improvements enable
the direct extraction of radiation from the 3� 1 fields,
whether through Weyl curvature components or Regge-
Wheeler-Zerilli variables [39,40].

These advances, however, do not lessen the relevance of
the Lazarus project. Despite great progress in recent years,
it is fair to say that the problem of black-hole binaries is not
completely solved. The most astrophysically interesting
simulations can still not be evolved long enough to reach
their assumed quiescent state. Directly extracted radiation
is still calculated at observer locations that lie in the ‘‘near-
field zone,’’ or may be under-resolved at more distant
locations, and is in general polluted by poor outer-
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boundary conditions. As long as such limitations exist,
there is a place for perturbative methods such as Lazarus.
Besides, numerical simulations are still very computation-
ally intensive, and avoiding the last � 100M of binary
black-hole evolutions means saving days to weeks of su-
percomputer time.

However, Lazarus makes approximations in its ap-
proach. Principal among these is the set of ad hoc choices
needed to translate the 3� 1 curvature information into a
Kerr background + perturbations. The validity of these
choices will depend on the data being evolved, and is
difficult to quantify a priori.

In this paper, we update the Lazarus project in light of
recent work on transverse frames, in a way that may help
resolve some of these issues. Beetle et al. [41] have
proposed a way of identifying the principal directions of
a numerical space-time in the 3� 1 ADM split. This
method—local in nature—allows us to narrow the gap
between the numerical tetrad and the Kinnersley tetrad
appropriate to the Teukolsky evolution without any back-
ground assumptions. When calculated with such a tetrad,
the longitudinal Weyl scalars �1 and �3 will vanish, while
the ‘‘monopole’’ scalar �2 will take on its Kinnersley-
tetrad value, and the transverse scalars �0 and �4, which
carry the radiative degrees of freedom, will differ from
their Kinnersley-tetrad values only by a complex factor.
This remaining factor can be compensated for, on a known
Kerr background in Boyer-Lindquist (BL) coordinates, via
a single spin-boost transformation at each point in space.

Although the quasi-Kinnersley frame by no means re-
moves all uncertainties from the problem of radiative ex-
traction, it goes sufficiently far that we expect it to improve
the Lazarus procedure considerably. In particular, we ex-
pect that the different—and more rigorous—path to
Teukolsky waveforms will give us an error estimate for
the tetrad dependence of original results, while the robust-
ness of the new technique should allow us to attempt
consistent wave extraction from earlier in a numerical
evolution.

Additionally, the quasi-Kinnersley frame may achieve
much in the simpler problem of direct radiation extraction
[42– 46]. In the past [13], we used an approximate tetrad to
calculate the Weyl scalar. Since the quasi-Kinnersley tetrad
can be constructed locally, without knowing Kerr parame-
ters and BL coordinates, we should now achieve a better
approximation to the Kinnersley tetrad during the 3� 1
evolution, and thus directly extract waveforms without
needing the background data.

The remainder of this paper is laid out as follows: in
Sec. II, we summarize the essentials of the original Lazarus
procedure for constructing Cauchy data for Teukolsky
evolution, as well as some of the main results from this
procedure. In Sec. III, we review the concepts of transverse
frames, and the quasi-Kinnersley frame, and describe the
numerical implementation of these concepts in our evolu-

tion code. In Sec. IV, we present comparative results from
the application of old and new techniques for three test
problems, two of which have already been addressed with
original Lazarus [13]. Discussion of the results obtained,
and future work can be found in Sec. V. Appendix A
contains expressions for several quantities related to the
evaluation of Weyl scalars in a numerical tetrad in BL
coordinates; Appendix B contains perturbative results for
the three test cases used in Sec. IV.

A. Notation and conventions

In the rest of the paper, we shall generally assume a
metric signature of ��;�;�;��. Our use of algebraic
quantities related to the Kerr-BL solution is nonstandard,
but consistent with [11]; we use an additional quantity � �
r2 � a2 for compactness.

Our sign convention for the definition of the Weyl
scalars is such that for the Kerr solution in BL coordinates
(and using the Kinnersley tetrad), the only nonvanishing
scalar is �2 � M=�r� ia cos��3.

Vector quantities are denoted by an arrow overhead,
except for unit vectors, which are instead capped by a
circumflex (̂ ). Complex conjugation is denoted by an over-
bar (�).

II. THE ORIGINAL LAZARUS METHOD

Here we provide a summary of the ‘‘original’’ Lazarus
procedure; full details can be found in [11], which we shall
refer to as Paper I from now on.

We start with a full-numerical 3� 1 evolution of a
space-time of interest. At some extraction (coordinate)
time T—before the simulation crashes due to numerical
instabilities—we map the evolved data to a black-hole
perturbative evolution code [47,48]. This simpler code
can then be evolved stably for as long as is needed to
determine the full history of the gravitational radiation
generated.

To assess the level of deviation from Kerr at late times in
the 3� 1 evolution, [49] introduced an invariant quantity,
the speciality index:

S � 27J 2=I3; (2.1)

where the two complex curvature invariants I and J are
essentially the square and cube of the self-dual part,
Cabcd � Cabcd � �i=2��abmnCmncd, of the Weyl tensor:

I � CabcdC
abcd and J � CabcdC

cd
mnC

mnab: (2.2)

The geometrical significance of S is that it measures
deviations from algebraic speciality (in the Petrov classi-
fication of the Weyl tensor). For the unperturbed algebrai-
cally special (Petrov type D) Kerr solution, S � 1.
However, for interesting space-times involving nontrivial
dynamics, like distorted black holes, which are in general
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not algebraically special (Petrov type I), we expect
S � 1��S, and the size of the deviation �S � 0, with
leading second perturbative order, can be used to assess the
applicability of black-hole perturbation theory.

As the expected end-state of most interesting black-hole
simulations is a single spinning (Kerr) hole, the perturba-
tive code implements the Teukolsky equation [50]. The
Kerr metric in BL coordinates takes the form:

ds2 � �

�
1�

2Mr
�

�
dt2 �

�

�
dr2 � �d�2 �

�

�
sin2�d�2

�
4aMr

�
sin2�dtd�;

(2.3)

where � � ��� 2Ma2rsin2�, � � �� 2Mr, � �
r2 � a2cos2�, and � � r2 � a2. In these coordinates, the
Teukolsky equation takes the form:

�
�2

4
� a2sin2�

�
@2 

@t2
�

4Mar
4

@2 
@t@�

�

�
a2

4
�

1

sin2�

�
@2 

@�2 �4
2 @
@r

�
1

4

@ 
@r

�
�

1

sin�
@
@�

�
sin�

@ 
@�

�

� 4
�
a�r�M�
4

� i cot�
�
@ 
@�
� 4

�
M�r2 � a2�

4
� �

�
@ 
@t
� �4cot2�� 2� � 0; (2.4)

where  � ��4�4 is the spin-2 Teukolsky function, and
� � r� ia cos�. Here � � mala;b �mb is a Newman-
Penrose spin coefficient, and �4 is a Newman-Penrose
Weyl scalar, both calculated using the Kinnersley tetrad.

In the Newman-Penrose formalism [51], there are ac-
tually five complex Weyl scalars, formed from contractions
of a null tetrad �la; na; ma; �ma� with the Weyl tensor:

�0 � Cabcdl
amblcmd; �1 � Cabcdl

amblcnd;

�2 � Cabcdlamb �mcnd; �3 � Cabcdlanb �mcnd;

�4 � Cabcd �manb �mcnd:

(2.5)

The �i encode all the vacuum curvature information of the
Weyl tensor. As space-time scalars, they are coordinate-
independent; however they do depend on the particular null
tetrad used. With an appropriate tetrad, in weak-field re-
gions, the interpretation of the �i is as follows: �2 em-
bodies the monopole nonradiative gravitational field; �1

and �3 contain the longitudinal radiative degrees of free-
dom (ingoing and outgoing, respectively), while �0 and
�4 contain the physical transverse radiative degrees of
freedom (ingoing and outgoing, respectively) [52]. For a
numerical space-time that contains a Kerr hole plus per-
turbative gravitational waves, �4 should contain only the
appropriate outgoing radiation.

The asymptotic behavior of solutions to the Teukolsky
equation is best expressed in terms of the so-called tortoise
coordinate r	:

r	 � r�
r2
� � a

2

r� � r�
ln

��������r� r�2M

��������� r
2
� � a

2

r� � r�
ln

��������r� r�2M

��������;
r
 � M


������������������
M2 � a2

p
: (2.6)

The point r	 � 0 roughly corresponds to the location of the
maximum of the Kerr solution’s scattering potential barrier
(see, for example, Eq. (415) and preceding material in
Chap. 8 of [53]). For this reason, it should not be crucial
to obtain initial data for the Teukolsky equation all the way

down to the horizon (r � r� ) r	 � �1), as long as we
have data for some r	 < 0.

Thus to perform the Teukolsky evolution of radiative
data that corresponds to the late-time evolution of our 3+1
initial data, we must identify the parameters �M;a� of the
Kerr background, and calculate the radiative Weyl scalar
�4 using the Kinnersley tetrad. Estimation of the physical
parameters can be performed fairly reliably through iden-
tification of physical invariants such as the apparent hori-
zon and ADM mass or correcting (iteratively) the initial-
data parameters by the radiative losses. Evaluating �4

using the correct tetrad is less straightforward.

A. Tetrad choice

In BL coordinates, the Kinnersley null tetrad takes the
form [54]:

~lKin �
1

�
��;�; 0; a�; ~nKin �

1

2�
��;��; 0; a�;

~mKin �
1���
2
p
�

�
ia sin�; 0; 1;

i
sin�

�
: (2.7)

Using this tetrad, the spin coefficient � takes the form:

� � �r� ia cos���1 � 1= ��: (2.8)

However, the BL coordinates will not, in general, coin-
cide with the numerical coordinates used in the full 3� 1
evolution. We can address this issue in a post-processing
step after the evolution, but we must still extract enough
curvature information to construct �Kin

4 . Rather than out-
put all the components of the Weyl tensor Cabcd, it is more
efficient to calculate the Weyl scalars with a numerically
convenient tetrad, and transform the results to the
Kinnersley values during post-processing.

The simpler tetrad we use during evolution is a sym-
metric null tetrad constructed from the unit hypersurface
normal �̂ and a set of three orthonormal unit spatial vectors
ê�1� � ê�, ê�2� � ê�, ê�3� � êr, suitably orthonormalized

THE LAZARUS PROJECT. II. SPACELIKE . . . PHYSICAL REVIEW D 73, 064005 (2006)

064005-3



via a Gram-Schmidt procedure:

~l num �
1���
2
p ��̂� ê�3��; ~nnum �

1���
2
p ��̂� ê�3��;

~mnum �
1���
2
p �ê�1� � iê�2��:

(2.9)

Similar tetrads have been commonly used in radiation
extraction from 3� 1 numerical investigations
[32,33,55,56], and such a tetrad was used in the earliest
investigations of the asymptotic radiative degrees of free-
dom of the Weyl tensor [52]. If we have long-lived 3D
numerical evolutions, whose physical domain extends far
from the strong-field region, the �4 extracted should yield
a good measure of the actual outgoing gravitational radia-
tion. We will refer to (2.9) hereafter as the numerical tetrad;
explicit formulas for the Kerr-BL Kinnersley tetrad are
given in (A1).

B. Reconstructing Boyer-Lindquist coordinates

The reconstruction of the BL coordinates �t; r; �; �� is
highly nontrivial. We approach the problem via the follow-
ing ad hoc steps:

(i) Assume no polar coordinate distortion;
(ii) Assume that with maximal slicing, numerical time

approaches Boyer-Lindquist time;
(iii) Derive the radial coordinate from the equatorial

value of numerical I ;
(iv) Add a radius-dependent correction to the numerical

azimuthal coordinate that zeros out the off-
diagonal three-metric component �r�.

In short:

�BL � �num; (2.10)

tBL � tnum; (2.11)

rBL � �3M2=I�1=6j��BL��=2�; (2.12)

�BL ��num � �offset �
Z r

1
��r0�=����dr0: (2.13)

These (last two) coordinate transformations can only be
performed as a post-processing step, after the termination
of the full 3D numerical evolution.

C. Transforming to the Kinnersley tetrad

For the Kerr-BL metric, we can move from the numeri-
cal tetrad to the Kinnersley tetrad by a set of linear trans-
formations governed by the parameters

A � a sin�

�����
�

�

s
; FA �

�������
2�

�

s
; FB �

����
�
p

�
: (2.14)

(Note that jFBj � 1, since � �� � r2 � a2cos2� � �.) The
specific transformations can be found in Eq. (A3); they

consist of a combination of type-I and type-II tetrad rota-
tions parametrized by A, followed by a type-III ‘‘spin-
boost’’ transformation parametrized by the real scaling
factor FA and pure-phase complex factor FB. This trans-
formation carries over to the Weyl scalars; in particular,

�Kin
4 � ��D� 1�2�num

0 � 4iA�D� 1��num
1 � 6A2�num

2

� 4iA�D� 1��num
3 � �D� 1�2�num

4 �=�4F2
AF

2
B�;

(2.15)

where D �
���������������
A2 � 1
p

. The equivalent transformations for
the other Kinnersley-tetrad scalars can be found in
Eqs. (A4)–(A7).

D. Summary of the original Lazarus procedure

To summarize, the original Lazarus procedure involves
the following steps:

(i) Construct at every point on the numerical grid a
coordinate null tetrad of the form (2.9);

(ii) Calculate the corresponding Weyl scalars �num
i , the

tetrad invariants I , J , and the speciality index S,
which we monitor during the entire full-numerical
evolution;

(iii) Determine the BL coordinates from the numerical
ones via the transformations (2.10), (2.11), (2.12),
and (2.13);

(iv) Use the transformation (2.15) to obtain the
Kinnersley-tetrad �4 and @t�4;

(v) Evolve the Cauchy data  � ��4�4 and @t using
the Teukolsky Eq. (2.4);

(vi) Extract the gravitational radiation information,
such as waveforms and total energy radiated at
different extraction times T.

E. Results of original Lazarus

The original Lazarus procedure as outlined above has
been applied extensively to numerical evolutions of black-
hole binary data, extending from head-on collisions, graz-
ing collisions and putative circular-orbit data at various
orbital separations [10,12,13].

One of the main shortcomings of Lazarus is the ad hoc
nature of the coordinate transformations in (2.10), (2.11),
(2.12), and (2.13). Even with data in the linearized regime,
Lazarus will be sensitive to how well the numerical space-
time satisfies these coordinate assumptions. For instance,
we have no guarantee that there is no angular distortion
between the numerical and BL radial coordinates (although
studies of post-merger apparent horizons have noted a
definite tendency of the horizon shape to circularize in
numerical coordinates).

An even bolder assumption is that maximal slicing will
yield a late-time lapse with the Kerr-BL shape. The Kerr-
BL lapse satisfies the maximal slicing equation; however,
the numerical lapse also depends on the boundary condi-
tions. In practice, we use Dirichlet boundary conditions,
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with values equal to that of the Schwarzschild lapse (M �
1) at the same coordinate position. This choice will give us
a lapse shape (and hence numerical time) qualitatively like
Kerr-BL; however we only have experimental quantitative
experience with the quality of the fit. It can be shown for
instance that the numerically obtained lapse quickly takes
the form of the BL lapse over points in the exterior of the
horizon; the greatest deviations occur within the ‘‘potential
barrier’’ at r	. A plot demonstrating this for evolved QC0
binary data is shown in Fig. 6 of Paper I.

A complete and unambiguous solution of the coordinate
problem is not yet available. Until it is, it seems sensible to
work to minimize Lazarus’s coordinate dependence. One
obvious area to address is the transformation (2.15) of the
curvature from numerical to Kinnersley tetrad; the numeri-
cal Weyl scalars are both mixed and scaled by coordinate-
dependent factors. An improvement has been made pos-
sible by evaluating the Weyl scalars instead with the quasi-
Kinnersley tetrad, which is the subject of the next section.

III. LAZARUS WITH THE QUASI-KINNERSLEY
FRAME

In this section, we review some recent results on trans-
verse frames in numerical space-times, and discuss how
they can be used to develop new techniques to improve the
Lazarus procedure described in Sec. II. The main aim is to
move closer to the calculation of the actual Kinnersley
tetrad during the full 3� 1 evolution, and thus to minimize
the need for ad hoc coordinate and tetrad correction
schemes.

A. Transverse frames and the quasi-Kinnersley frame

The Kinnersley tetrad on a Kerr background is trans-
verse—when calculated with this tetrad, the ‘‘longitudi-
nal’’ Weyl scalars �1 and �3 vanish. This continues to
hold for the nontrivial situation of a Kerr hole plus perturb-
ing radiation. However, the coordinate and slicing ambi-
guity of a generic numerical space-time, even when only
perturbatively different from Kerr, mean that this tetrad can
be difficult to identify. The Lazarus tetrad-transformation
procedure outlined in the previous section will not, in
general, yield a transverse tetrad.

Away of identifying transverse tetrads is through finding
the eigen-bivectors of the self-dual Weyl tensor Cabcd [41]
(see also Chap. 4 of [57]). When expressed in a 3� 1
decomposition, the Weyl tensor is projected to Cac �
Cabcd�

b�d, and the eigen-equation becomes

Cac	c � �Eac � iBac�	c � 
	a; (3.1)

where Eab and Bab are the so-called electric and magnetic
parts of the Weyl tensor [55,58]. This can be recast by
projecting the Weyl tensor onto the orthonormal triad
fê�i�g: following [57], we can write (summation is implied
over parenthetical indices):

Cac � Q�i��j�e�i�ae�j�c; (3.2)

	a � V�i�e
a
�i�; (3.3)

where Q�i��j� is a symmetric complex 3 3 matrix whose
components are:

Q�1��1� � ��2 � ��0 ��4�=2;

Q�1��2� � i��0 ��4�=2; Q�1��3� � �3 ��1;

Q�2��2� � ��2 � ��0 ��4�=2;

Q�2��3� � �i��1 ��3�; Q�3��3� � 2�2;

(3.4)

and the �i are calculated using the symmetric tetrad (2.9).
Then the eigen-equation (3.1) reduces to

Q�i��j�V�j� � 
V�i�: (3.5)

The three eigenvalues 
 of the matrix Q�i��j� label three
transverse frames; the corresponding eigenvectors give the
principal directions of the space-time. One of the 
 is
preferred—it will be analytic near the point S � 1 in the
complex S-plane. The frame related to this 
 is called the
quasi-Kinnersley frame. The preferred 
 will be numeri-
cally equal to 2�Kin

2 , the value of the monopole Weyl
scalar as calculated with the Kinnersley tetrad.

Beetle et al. [41] have described the analytic determi-
nation of the Weyl eigenvalues. In practice, establishing
analyticity of the the eigenvalues is not necessary numeri-
cally—Mars [59] has pointed out that close to Kerr, the
eigenvalue with the largest complex norm will give the
desired frame; this conclusion has been made more secure
by [41], who have shown that this is a valid conclusion
everywhere in the disc k S � 1 k <1. Instead of following
the analytic route, therefore, we use the LAPACK routine
ZGEEV [60] to determine numerically the eigenvalues and
eigenvectors of Q�i��j�. We select the largest-modulus ei-
genvalue as the appropriate (quasi-Kinnersley) one.

B. Tetrad reconstruction

Beetle et al. [41] lay out a procedure for constructing a
tetrad �la; na; ma; �ma�qK in the quasi-Kinnersley frame
from the eigenvector V�i�: first construct 	a from (3.3);
normalize it so that k ~	 k� 1; separate into real and
imaginary parts: 	a � xa � iya; construct a third orthogo-
nal vector za � "abcx

byc; then the new null tetrad vectors
are

~l qK �
jcj���

2
p

�
k ~x k �̂�

~x� ~z
k ~x k

�
; (3.6)

~n qK �
jcj�1���

2
p

�
k ~x k �̂�

� ~x� ~z
k ~x k

�
; (3.7)

THE LAZARUS PROJECT. II. SPACELIKE . . . PHYSICAL REVIEW D 73, 064005 (2006)

064005-5



~m qK �
ei����

2
p

� ���������������������
k ~x k2 �1

q
�̂�

�~z� i ~y����������������������
k ~x k2 �1

p �
; (3.8)

where c � jcjei� is an arbitrary spin-boost parameter. We
take jcj � 1; � � �=2, in order to produce a tetrad that
asymptotes to the original numerical tetrad at large dis-
tances. The subscript ‘‘qK’’ will refer to this specific
choice of c from this point.

If it happens that the eigenvector 	a is identically

real, k ~x k� 1, k ~y k � k ~z k �
���������������������
k ~x k2 �1

p
� 0 (see

Appendix B 3 for analytic examples in the ‘‘close-slow’’
limit of binary Bowen-York data). This is not a problem
when constructing ~lqK and ~nqK; however Eq. (3.8) will now
be undefined. A valid complex null vector ~mqK can still be
formed in this case, by replacing the second term in paren-
theses by any linear combination ~a� i ~b of two unit spatial
vectors orthogonal to ~x. Beetle et al. supply one such
choice in Eq. (29) of [41]. However, the resulting ~mqK at
this point will have real and imaginary components that
may not match continuously to neighboring points.

In a continuous domain, we could imagine evaluating
~mqK by taking a limit from neighboring points; on a

numerical domain (especially in 3D), this is an impractical
approach, as (i) it would necessitate knowing in advance
which points would need to be interpolated, and (ii) we
would need a very dense numerical mesh to carry out such
an interpolation. Additionally, there are cases where the
pathological points are not isolated, but cover the entire
domain. This is the case for Schwarzschild and Brill-
Lindquist data. In such cases, no interpolation procedure
is possible.

For these reasons, we use an alternative tetrad recon-
struction procedure, one that avoids pathologies entirely.
We start by following the prescription of Eqs. (3.6) and
(3.7) for the reconstruction of the real null vectors ~lqK and
~nqK, as in [41]; these vary smoothly from point to point,
even for pathological regions when k ~z k� 0.

Next, we take the original numerical complex null vec-
tor and split it into real and imaginary parts: ~m � ~X� i ~Y.
Now starting from these vectors, orthonormalize them
according to a set of Gram-Schmidt-like steps. Since ~lqK

and ~nqK are already correctly orthonormalized, the remain-
ing requirements are

~mqK � ~lqK � 0) ~X � ~lqK � 0; ~Y � ~lqK � 0;

~mqK � ~nqK � 0) ~X � ~nqK � 0; ~Y � ~nqK � 0;

~mqK � ~mqK � 0) ~X � ~Y � 0; ~X � ~X � ~Y � ~Y;

~mqK � ~�mqK � 1) ~X � ~X� ~Y � ~Y � 1:

The last two equations combine to imply that

~X � ~X � ~Y � ~Y � 1=2:

To impose these conditions, we begin with ~X � ê�1�=
���
2
p

,

and enforce the conditions in turn (note that since ~lqK and
~nqK are null, the Gram-Schmidt procedure looks slightly
unusual):

~X ! ~X� � ~X � ~lqK� ~nqK;

~X ! ~X� � ~X � ~nqK�~lqK;

~X ! ~X=
�����������������
2� ~X � ~X�

q
:

In a similar manner, we take ~Y � ê�2�=
���
2
p

, and enforce
orthogonality to ~X just before normalization.

It can be seen that the real and imaginary parts of (3.8),
used as ~X and ~Y, pass untouched through the Gram-
Schmidt steps above. The choice we make of beginning
with the original ~m instead will mean that our final ~mqK

differs from (3.8) by no more than a spin term. Unlike (3.8),
the Gram-Schmidt procedure described can be used every-
where in the numerical domain, and guarantees a smooth
behavior moving between neighboring nonpathological
and pathological points.

Following the procedure as outlined here exactly repro-
duces the quasi-Kinnersley tetrad for Kerr-BL, and be-
haves well for Brill-Lindquist and Bowen-York-type
binary data.

C. Spin-boost fixing and the Kinnersley tetrad

The tetrad obtained from this procedure will be trans-
verse, and moreover, will be in the same transverse frame
as the Kinnersley tetrad—differing only by a Type-III—or
spin-boost—transformation. Such a transformation will
leave the scalar �2 unchanged, but will have a strong
effect on the radiative fields �0 and �4, scaling and mixing
polarizations.

Lacking an unambiguous and natural way to lock down
the spin-boost needed to obtain the Kinnersley tetrad from
the quasi-Kinnersley frame member, we return to our
knowledge of the Kerr background. It can be shown that
for Kerr-BL, the null tetrad produced from the correct
transverse eigenvector (by following the construction in
[41]) is

~lqK �
1����������

2��
p ��;�; 0; a�;

~nqK �
1����������

2��
p ��;��; 0; a�;

~mqK �
�i�������
2�
p

�
ia sin�; 0; 1;

i
sin�

�
;

(3.9)

that is, the new tetrad is related to the Kinnersley tetrad
(2.7) via
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~l Kin �

�������
2�

�

s
~lqK; ~nKin �

�������
�

2�

s
~nqK;

~mKin �
������
�
p ~mqK:

(3.10)

This implies that the corresponding Kinnersley-tetrad �4

can be obtained simply from

�Kin
4 � �qK

4 =F2
AF

2
B: (3.11)

Note that this transformation, unlike (2.15) for original
Lazarus, does not involve any mixing of the Weyl scalars.

D. Summary of the new procedure

Thus the new Lazarus procedure involves the following
sequence of steps:

(i) Construct at every point on the numerical grid a
coordinate null tetrad of the form (2.9);

(ii) Calculate the corresponding Weyl scalars �num
i ,

the tetrad invariants I , J , and the speciality index
S, which we monitor during the full-numerical
evolution;

(iii) Construct the matrix Q�i��j� (3.4), and find its
eigenvalues and eigenvectors;

(iv) Pick the eigenvalue 
 with the largest (complex)
magnitude;

(v) Use the corresponding unit-norm eigenvector ~V to
form the principal (complex) spatial vector 	a �
V�i�ea�i�;

(vi) Construct a new null tetrad according (3.6) and
(3.7), and the pathology-avoiding steps following;

(vii) Recalculate the Weyl scalars with this new tetrad;
(viii) Determine the BL coordinates from the numerical

ones via the transformations (2.10), (2.11), (2.12),
and (2.13);

(ix) Use the transformation (3.11) to produce the
Kinnersley-tetrad �4 and @t�4;

(x) Evolve the Cauchy data  � ��4�4 and @t 
using the Teukolsky equation (2.4);

(xi) Extract the gravitational radiation information,
such as waveforms and total energy radiated at
different extraction times T.

In the above, only steps (i)–(vii) can be carried out in the
full-numerical evolution; step (ix) is a post-processing
step, as it still involves knowledge of the appropriate
Kerr background parameters (M;a), and BL coordinates.
While the new Lazarus approach outlined above does not
solve this problem, it reduces the dependence of the
Teukolsky data on the tetrad choices, by reducing the
number of functions that depend on the BL coordinates.

IV. NUMERICAL EVOLUTIONS

We have applied the new transverse-frame-based tech-
niques outlined above to three numerical regimes of in-

creasing complexity: Bowen-York data for one spinning
hole, Brill-Lindquist data for the head-on collision of two
black holes, initially at rest, and transversely boosted bi-
nary Bowen-York data, representing an ‘‘innermost stable
circular orbit.’’ Two of these data sets were already inves-
tigated in detail using the existing Lazarus approach in
[13]; our new techniques should allow some additional
estimate on their validity.

The results have been obtained from 3D evolutions
performed with the standard ADM decomposition of
Einstein’s equations [61], together with zero shift and
maximal slicing lapse. It may be objected that this combi-
nation of evolution systems and gauge conditions is not
state-of-the-art. More sophisticated and stable systems are
in wide use at present, and we would certainly expect them
to produce much longer-lived stable full 3D evolutions. In
particular, a new numerical-relativity framework (LazEv)
has been successfully developed [62] and is currently
available to the authors of this paper; it allows for evolu-
tions of black-hole binaries using higher-order finite differ-
encing, with the BSSN formulation of Einstein’s equations
and dynamical gauge conditions. Nevertheless, we have
two reasons for using the ‘‘ADM+maximal slicing+zero-
shift’’ combination: First, this combination was that used
for the original Lazarus tests; if we desire a fair comparison
of old and new methods, focused on the new tetrad meth-
ods we have developed, use of more modern and stable
evolution methods will only obscure the results. Second,
the introduction of more sophisticated gauges will neces-
sitate the reconsideration of the the numerical-to-Kerr-BL
coordinate transformation. In particular, the use of other
lapse evolution schemes may lead to a lapse shape signifi-
cantly different to the maximal and Kerr-BL shapes. Also,
the presence of a non-zero-shift vector will alter the
azimuthal-angle relationship (2.13).

We carried out the coding and testing of the concepts
presented here using the Cactus [63] framework. Post-
processing of the 3D data and subsequent Teukolsky evo-
lution was done with stand-alone codes.

In these evolutions, we were also monitoring the appear-
ance of a single merged black hole using the apparent
horizon finder AHFINDERDIRECT [64].

A. Spinning Bowen-York data

The Bowen-York solution [65] representing a single
black hole with angular momentum J should resemble—
once the Hamiltonian constraint has been solved—a single
Kerr black hole with gravitational radiation on top. The
rotational symmetry of the solution about its spin axis (the
coordinate polar or z axis) means that only radiation with
m � 0 will be present, and that there should be no net loss
of angular momentum through gravitational radiation.
Some analytic treatment of this data is presented in the
Appendix B 1, based on Gleiser et al.’s perturbative
analysis [66].
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In an early numerical investigation of the suitability of
such data for Lazarus, we evaluated this data—using a
full-numerical solution to the constraints—and extracted
the radiation content of the initial data via the new Lazarus
method. We found that for small spins (J=M2 & 0:2), a
spatial resolution of up to M=80 would be necessary to
identify unambiguously the leading-order real (‘ � 2) and
imaginary (‘ � 3) parts of the Teukolsky function. Such a
resolution is not feasible for a unigrid run, if the outer
boundaries are to be outside the strong-field region. For
this reason, we have used a larger initial spin for full-
numerical simulations.

This data was implemented on the initial numerical slice
in Cactus, with bare mass m � 0:858MADM, and spin
angular momentum J � 0:553M2

ADM; after numerical so-
lution of the Hamiltonian constraint, the ADM mass of the
initial data was MADM � 1:0. To extend the physical do-
main, we used a ‘‘transition fisheye’’ radial transformation
of the numerical coordinates [11]. The explicit form we
used in this paper can be found in Eq. (114) of [67], with
parameters �a � 7; s � 2; r0 � 7�; this produced a physi-
cal radial extent of 33:6M from a numerical radial extent of
10:79M. We used three spatial resolutions—M=12, M=18
and M=24. Because the solution below the x–y plane is
trivially related to that above the plane, we were able to
evolve the upper bitant only. The 3� 1 simulation died due
to numerical instabilities before 25M of coordinate time at
the coarsest resolution, before 19M at the medium resolu-
tion, and before 18M at the finest resolution.

For such a weak-field case, we expect the Lazarus
techniques to be applicable from a very early time. An
apparent horizon is already present in the initial data, and
Fig. 1 shows the value of the (real part of the) speciality
index S along the x axis outside the horizon, evaluated at
several times in the evolution. At all times after the initial
slice, the deviation from the Kerr value of S � 1 is at most
�2%. Thus the spinning BY data should certainly be
within the linearized regime almost immediately.
(Nevertheless, Lazarus results will be sensitive to how
well the numerical space-time satisfies the coordinate as-
sumptions of Sec. II B.)

We analyzed the evolved data with both the original and
new Lazarus approaches. At every M of coordinate time
evolution, the Weyl scalars were calculated using both the
original and new tetrads, then mode-decomposed and
saved to file. We post-processed this data to produce the
Teukolsky Cauchy data � ; @t �, which was then evolved
using a code that solves the Teukolsky Equation. The total
extracted energy as a function of extraction time T is
shown in Fig. 2. Between extraction times of 1M and
5M, we see an emitted-energy plateau at around 1:25
10�4M, common to both original and new Lazarus, with a
deviation of �3:5% between old and new values.

We would expect that once we have entered an energy
plateau, we should remain there, at least until the radiation

has left the outer boundary of the full-numerical domain.
However, for later extraction times, from 6M to 10M, we
see a monotonic decrease in emitted energy, leading to a
low point of �0:88 10�4M, a drop of �30%. This
degradation is common to both original and new Lazarus.

This behavior may be an artifact of the underlying ADM
evolution system, or other aspects of the Lazarus proce-
dure; even for the relatively high spin chosen here, spin-
ning Bowen-York is a weak source of gravitational
radiation, and presumably extremely sensitive to details
in the simulation. Further investigation with newer, more
stable and accurate, evolution systems may illuminate the
situation.

The level of emitted energy is consistent with the full-
numerical results shown in [68] and the perturbative results
of Gleiser et al. [66]: they obtain a total emitted energy of

FIG. 1 (color online). The real part of the S invariant along the
x axis for spinning BY data, at different extraction times T.

FIG. 2 (color online). Total radiated energy for Spinning BY
data as calculated from original (L1) and new (L2) Lazarus
methods, as a function of extraction time T.
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�2:5 10�4M for a spin of JADM � 0:55M2. Although
significantly larger than our peak energy of �1:25
10�4M, it falls into the ‘‘factor of 2’’ accuracy the authors
assess for their method at high spins.

Selected Teukolsky-evolved waveforms (the rescaled
Weyl scalar �4), measured at �r	 � 30M;� � 0�, are
shown in Fig. 3. The waveforms shown are for the new
tetrad method only (old-method waveforms are indistin-
guishable). There is good agreement especially between
extraction times T � 3M and 5M. For later extraction
times, the waveforms lose coherence after a few
wavelengths.

B. Brill-Lindquist data

This test revisits the case of head-on collisions of Brill-
Lindquist data, treated previously in the Lazarus context
[10,13]. Data of this type was studied in a perturbative
form in Ref. [69]; based on the full-numerical results
available at the time, perturbative results overestimate the

FIG. 4 (color online). The S invariant along the z axis for
head-on data, at different extraction times T.

FIG. 3 (color online). Evolution of the m � 0 spinning BY
waveform for the new (L2) Lazarus method, evaluated at r	 �
30M along maximal amplitude directions: � � 90� for Re��4�,
� � 45� for Im��4�. The five curves represent five different
extraction times in the energy plateau of Fig. 2.

FIG. 5 (color online). Radiated energy for head-on collision as
calculated from original (L1) and new (L2) Lazarus methods, as
a function of extraction time T. Note the extension of the plateau
with increasing resolution.
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total emitted energy for large separations. Qualitatively
similar conclusions can be drawn using Misner initial
data [3].

The specific initial data chosen has two holes with equal
bare masses m � 0:50M, with a coordinate separation
along the y axis of 2:303M, yielding a proper horizon-
to-horizon separation of L � 4:9M, and no linear or angu-
lar momentum (this data set was referred to as ‘‘P � 0’’ in
[13]). The symmetry of the problem allows us to use only
the first octant of the numerical grid during evolution.
Otherwise, the grid extent and fisheye transformation
were identical to those for the spinning Bowen-York case
above.

Again, we evolved the initial data using the ‘‘standard
ADM’’ evolution scheme with maximal slicing and zero
shift. The finest resolution run crashed due to numerical
instabilities before 20M of coordinate time. Nevertheless, a
common apparent horizon was found at coordinate time
t � 8M, and there is reason to believe that a common event
horizon is present from t � 3M [70] and a continuous
potential barrier surrounding the strong-field region around
even earlier. We show the evolution of the speciality index
S in Fig. 4. While deviations from unity are always large
near the punctures, the overall deviation outside the even-

tual common horizon location have dropped to below 10%
by T � 8M, indicating we have entered the linear regime.

Figure 5 shows the total radiated energy from the
Teukolsky evolution, as a function of the extraction time
T for original and new methods, for the m � 0 (upper
panel) and m � �2 (lower panel) modes. For both sets
of modes, original and new Lazarus deviate at early ex-
traction times. While the original Lazarus results repro-
duce what was seen in Fig. 5 of [13]—the radiated energy
reaches a crude plateau between extraction times of 4M
and 10M—the new-tetrad-produced energy reaches a level
plateau only after 7M. After this time, both methods agree
well until 10M, but with a noticeably more level plateau in
the weaker m � 0 curve for the new tetrad.

Table I compares the total energy calculated with old
and new Lazarus with a direct-extraction energy taken
from [62] (this extraction was from a rather close detector
position, r	;obs � 7:46M). While both Lazarus figures dif-
fer from the direct result, the new Lazarus plateau—mea-
sured from T � 8M and T � 11M—has less than half the
standard deviation of old Lazarus, indicating a more stable
plateau.

Figure 6 shows the dominant-mode (m � �2) Lazarus
waveform for the head-on collision, measured at �r	 �
30M;� � 0�. While the difference between curves for
early extraction times can give an idea of the uncertainties
of the method when nonlinearities are present the agree-
ment at later times shows when a safe, linear regime is
reached.

C. QC0 data

The final test of our method again revisits initial data
treated in [13]: Bowen-York binary black-hole data, where
the holes have zero spin, but are boosted in a direction
transverse to their separation, to achieve a net orbital
angular momentum J.

Khanna et al. [71] investigated such data to first pertur-
bative order, through Zerilli and Teukolsky schemes. The
emitted-energy curves from the two methods diverge at the
level J=M2 � 0:4� 0:5, and this the authors take as the
limit of applicability of linear perturbative theory. At the
highest analyzed spin, J=M2 � 0:6, the Teukolsky- and
Zerilli-calculated energies are �8 10�3M and �5
10�3M respectively.

Here, we use the binary Bowen-York data with equal
bare masses m � 0:45M, located at coordinate positions
y � 
1:1515M, and with Bowen-York ‘‘boosts’’ P �

0:335M in the x direction. These result in a physical
throat-to-throat separation L � 4:9M, and a total ADM
angular momentum J � 0:77M2. We refer to this data set
as ‘‘QC0,’’ following the classification scheme of [13]; it
was originally suggested by Baumgarte [72] (adapting
Cook’s ‘‘effective potential’’ method [73] to punctures)
as a model for the so-called ISCO of two equal-mass black
holes.

TABLE I. Comparison of emitted E for head-on collision.
Direct results (r	;obs � 7:46M) are from [62]. �E and 	E are
the mean and standard deviation from four plateau values.

Source j �Ej=M 	E=M
10�4 10�4

Direct 6.6 . . .
L1 (8� 11M) 6.827 0.446
L2 (8� 11M) 6.811 0.179

FIG. 6 (color online). Evolution of the m � �2 head-on wave-
form for the new (L2) Lazarus method, evaluated at �r	 �
30M; � � 0�.
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In contrast to the two previous test cases, numerical
instabilities will kill the QC0 data evolution before a single
common apparent horizon has appeared (though a common

event horizon may already be present). Thus Lazarus ex-
traction and evolution of Teukolsky data would not appear
to be completely justified at any time. Nevertheless, [13]
found a small plateau in the emitted energy, indicating a
range of extraction times where the system has effectively
linearized prior to the simulation’s crash.

For this data, the Lazarus procedure was carried out
initially using a zeroth-order parameter estimate taken
from the ADM energy and angular momentum of the initial
data: M � 1, a � 0:77. However, since the emitted energy
and angular momentum were at the level of a few percent
of the total, the subsequent drop in background mass and
spin might be significant. For this reason, we iterated the
method with suitably reduced background mass and spin
parameters: M � 0:974, and a � 0:675=M � 0:693.

To demonstrate how quickly the system appears to relax
to Kerr, we show in Fig. 7 the S invariant along the x and
z axes. Along the z axis, S clearly takes time to settle down,
only uniformly falling within �0:5; 2:0� rather late in the
simulation, after T � 8M.

Figure 8 shows the emitted energy and angular momen-
tum, respectively, for both original and new Lazarus meth-

FIG. 7 (color online). The S invariant along the x (upper) and z
(lower) axes for QC0 data, at different extraction times T.

FIG. 8 (color online). m � �2 radiated energy and angular
momentum for QC0 data as calculated from original (L1) and
new (L2) Lazarus methods, as a function of extraction time T.

FIG. 9 (color online). The two polarizations of the m � �2
QC0 waveform for the original (L1) Lazarus method, evaluated
at �r	 � 31M; � � 0�.
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ods (the dominant m � �2 mode waveform is plotted for
old and new Lazarus in Fig. 9 and 10, respectively). The
original Lazarus results can be found in Fig. 22 of [13]
(note that the latter figure contains the total energy summed
across m modes). There is significant deviation between
original and new Lazarus results up to the extraction time
of T � 6M. The two methods agree well for T 2
�7M; 8M�, but begin to diverge again around the time
new Lazarus develops plateau values of around 1:1
10�2M and 4:25 10�2M2 for the emitted energy and
angular momentum, in the mode m � �2, respectively.

Working with the more time-resolved data of the inserts in
Fig. 8, we have identified the plateaus for old and new
Lazarus, and calculated the means and standard deviations.
We present these in Table II, along with direct-extraction
results (r	;obs � 14:03M) from [74]. While both old and
new means differ from the direct-extraction figures, new
Lazarus’s plateau is flatter.

Because the QC0 data takes time to plunge to a single
hole, the onset of linearization will be delayed relative to,
for instance, the head-on case. The fact that the observed
plateau does not persist for longer than �2M is a conse-
quence of the instability of the simple combination of
‘‘ADM+maximal lapse+zero shift’’ we have used in our
full-numerical evolutions here. In this sense, QC0+ADM is
a ‘‘marginal’’ Lazarus case; to establish the plateau un-
ambiguously will require evolutions that last for several
more M. This will necessitate more advanced evolution
systems and gauges, and is addressed in the Discussion
below.

V. DISCUSSION

The original Lazarus method was a successful synthesis
of full-numerical and perturbative methods in numerical
relativity. It was responsible for the production of the first
waveform for black-hole binary mergers and close orbits,
before these regimes were accessible to a complete full-
numerical treatment.

We have presented in this paper the first in a series of
proposed improvements to the Lazarus method—improve-
ments which will, we hope, make Lazarus more ambitious
in its reach, and more rigorous in its grasp. The develop-
ments herein have focused on the important area of tetrad
determination. We can now obtain—in the ‘‘real time’’ of
the full-numerical evolution—a transverse tetrad that will
differ from the Kinnersley tetrad only by a spin-boost.

We described in Sec. III how this new method of tetrad
determination can be incorporated into the Lazarus project,
eliminating the artificial mixing of monopolar, longitudinal
and transverse modes that was necessary in original
Lazarus. To test this new aspect, we have applied it on
the same footing as original Lazarus—to the short-lived
ADM evolutions of three different types of black-hole data.

Our numerical results with this method, reported in
Sec. IV, have allowed us to test this mode mixing for the
first time. The good agreement between old and new
methods for the single Spinning Bowen-York and head-
on cases, where linearization is seen well before code
break-down, can be seen as a validation of the applicability
of the original Lazarus mixing formulas; additional evolu-
tion time may be needed to resolve the marginal case of
QC0 data satisfactorily. In contrast, the areas of differ-
ence—seen for instance, before T � 7M in Fig. 5 for the
Head-On case—indicate better where our assumption of
linear deviation from Kerr may not have been justified.
With this alternative path to the Kinnersley tetrad in

FIG. 10 (color online). The two polarizations of the m � �2
QC0 waveform for the new (L2) Lazarus method, evaluated at
�r	 � 31M;� � 0�.

TABLE II. Comparison of emitted E and J for QC0 merger.
Direct results (r	;obs � 14:03M) are from [74]. �E, �J are the
means and 	E, 	J the standard deviations from five plateau
points (indicated in first column).

Source j �Ej=M 	E=M jJj=M2 	J=M
2

10�2 10�2 10�2 10�2

Direct 2:8
 0:2 . . . 11:0
 1:0 . . .
L1 (9:0� 11:0M) 2.570 0.067 9.493 0.434
L2 (8:5� 10:5M) 2.422 0.031 8.553 0.175
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Lazarus, we have produced error estimates for the tetrad
construction procedure; we can estimate the contribution
that errors in this procedure make to the overall uncertainty
in Lazarus energies. It should be noted, however, that this
error is unlikely to dominate the total uncertainty in emit-
ted energies. Comparison of Lazarus (both old and new)
results with more direct-extraction techniques, shown in
Tables I and II, indicate that other important factors must
still be addressed. A reasonable estimate of theoretical
error in waveforms will be needed for their application to
analysis of gravitational-wave detector signals in the
future.

For the next stage in the Lazarus project, we plan to use
modern evolution schemes, such the one provided by the
LazEv framework [62], which are more stable and accurate
than ADM. LazEv currently supports higher-order finite
differencing for the BSSN formulation of Einstein’s equa-
tions with the choice of several dynamical gauge condi-
tions, and should allow for extended energy plateaus,
extending from the time of first linearization of the system
until the time the radiation leaves the system. This added
full-numerical evolution time will aid in the unambiguous
identification of the linearization time for marginal cases
such as ‘‘QC0’’ above.

At present, it is unclear how to relate Boyer-Lindquist
time to the numerical time developed with standard nu-
merical gauges. Maximal slicing was discussed in
Sec. II E; future refinements of this may use analytic in-
sights into the late-time shape of the maximal lapse (see
[75] for work on maximal slicings of Schwarzschild).
Commonly used dynamic slicings (e.g., ‘‘1� log’’ slicing)
ensure a lapse function with the same qualitative shape,
falling smoothly off to unity at large distances. The exact
shape will vary greatly in the near-field region, however,
and this will affect both old and new Lazarus; this is an
interesting problem, which we hope to address in future
work.

Treatment of the shift is decoupled from the lapse in the
Lazarus approach; the shift correction via adjustment of �
is independent of the slicing analysis. Corotating coordi-
nates can already be accommodated with this method. We
expect to treat more complicated evolution shifts in a
similar way.

The quasi-Kinnersley frame has further useful applica-
tions. For direct radiation extraction at a finite observer
location in the 3D numerical grid. It also provides a closer
interpretation in terms of radiation for 3-dimensional vis-
ualizations. Originally one uses the numerical tetrad to
evaluate �4. In order to give this a direct interpretation
in terms of radiation, one implicitly assumes that the ob-
server is sufficiently far from the strong-field region that
the background space is almost flat, and the numerical
tetrad is a good approximation to Kinnersley.

With the quasi-Kinnersley frame, we can get much
closer to the true Kinnersley form at finite observer loca-

tions. This should supply us with a more robust waveform
at distant locations, and allow us to approach the near-field
zone with greater confidence. While impracticable for
short-lived ADM evolutions, modern evolution systems
should produce several periods of directly extracted wave-
forms at different extraction radii. Outer-radius waveforms
may be compared with Lazarus results; inner waveforms
may be compared with outer ones as a test of the quality of
strong-field waveforms in general.

Aside from the longer full-numerical evolution times,
we plan to investigate further several issues to improve the
generality of Lazarus.

The transformations used to extract Boyer-Lindquist
coordinates from the numerical ones perform well, but
there is much room for improvement. One obvious—and
theoretically well-founded—step that can be taken is re-
laxing the assumption that there is a one-to-one relation-
ship between the numerical radial coordinate Rnum and the
Boyer-Lindquist r. Since we know the theoretical form of
the invariant I as a function of �r; ��, we can imagine using
I everywhere to derive both r and �. We have performed
initial investigations of this possibility, but found that the
off-equator radial transformation derived does not reach
sufficiently close to the horizon, at least for the most
difficult cases, such as the QC0. Longer full-numerical
evolutions may improve the performance of this technique,
as a horizon appears and circularizes. We also plan to
revisit the choice of the time slicing as this might be crucial
to process longer-term fully nonlinear evolutions.
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APPENDIX A: NUMERICAL-KINNERSLEY
TRANSFORMATIONS FOR KERR DATA

In Boyer-Lindquist (BL) coordinates, the numerical-
tetrad—defined by (2.9) with orthonormalized spherical
coordinate directions for the ê�i�—takes the form:

~l num �
1

2

� ��������
�

��

s
;

����
�

�

s
; 0;

2aMr������������
���
p

�
;

~nnum �
1

2

� ��������
�

��

s
;�

����
�

�

s
; 0;

2aMr������������
���
p

�
;

~mnum �
1

2

�
0; 0;

1����
�
p ;

i
sin�

�����
�

�

s �
:

(A1)

Such a tetrad will differ strongly from the Kinnersley
tetrad; as a consequence, all Weyl scalars calculated from
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it will be nonzero. For Kerr-BL, these values will be

�0 � �4 � �
M

2� ��3
�3��2 ����;

�1 � ��3 � �
M

2� ��3
�3i�

�����������������
�2 ��

p
�;

�2 � �
M

2� ��3
���3�2 ����:

(A2)

For Kerr-BL coordinates, the numerical null tetrad (A1)
used in 3� 1 numerical calculations can be transformed to
the Kinnersley tetrad (2.7) via a combination of null rota-
tions and spin-boosts:

~lKin �
FA
2
f�D� 1�~lnum � �D� 1� ~nnum

� iA� ~mnum � ~�mnum�g;

~nKin �
F�1
A

2
f�D� 1�~lnum � �D� 1� ~nnum

� iA� ~mnum � ~�mnum�g;

~mKin �
FB
2
f�D� 1� ~mnum � �D� 1� ~�mnum

� iA�~lnum � ~nnum�g: (A3)

Note that this is a corrected form of the transformations
that appeared in Eqs. (5.9a–5.9c) of Paper I.

The dependence of the Kinnersley-tetrad �4 on the the
numerical-tetrad scalars was given in (2.15), for perturba-
tions of Kerr-BL coordinates. The following are the corre-
sponding expressions for the remaining Kinnersley Weyl
scalars (the mixing function A and spin-boost functions FA
and FB are given by (2.14), and D �

���������������
A2 � 1
p

):

�Kin
0 � ��D� 1�2�num

0 � 4iA�D� 1��num
1 � 6A2�num

2

� 4iA�D� 1��num
3 � �D� 1�2�num

4 �F2
AF

2
B=4;

(A4)

�Kin
1 � ��iA�D� 1��num

0 � 2�D� 1� 2A2��num
1

� 6iAD�num
2 � 2�D� 1� 2A2��num

3

� iA�D� 1��num
4 �FAFB=4; (A5)

�Kin
2 � �A2�num

0 � 4iAD�num
1 � �4� 6A2��num

2

� 4iAD�num
3 � A2�num

4 �=4; (A6)

�Kin
3 � �iA�D� 1��num

0 � 2�D� 1� 2A2��num
1

� 6iAD�num
2 � 2�D� 1� 2A2��num

3

� iA�D� 1��num
4 �=�4FAFB�: (A7)

It can be easily verified that these transformations, applied
to the numerical-tetrad Weyl scalars of Kerr given in (A2),

produce the Kinnersley values:

�Kin
2 � M= ��3; �Kin

i�2 � 0:

APPENDIX B: PERTURBATIVE RESULTS

1. Weyl Scalars for spinning Bowen-York data

Gleiser et al. [66] investigated the low-spin behavior of
the Bowen-York data, obtaining an analytic solution for the
conformal factor accurate up to O��3�, where � � J=M2,
and evolving the extracted radiative modes via the Zerilli
formalism.

For zero spin, the Bowen-York solution reduces to the
Schwarzschild solution in isotropic coordinates, and is
automatically constraint-satisfying; for small spins, the
dominant radiation (‘ � 2) should scale as �2, while the
next mode (‘ � 3) will scale as �3.

As an estimate of the radiation content of this data, we
may calculate the Weyl scalars of the approximate solution
above; using the numerical tetrad (A1), we find on the
initial slice:

�0 � �4 �
1536

5

M3�2R5

�2R�M�14 �A0 � i�B0�sin2�;

�1 � ��3 �
384

5

M2�R4

�2R�M�15
�iA1 � �B1 � i�2C1�;

�2 �
64

5

MR3

�2R�M�14 �A2 � i�B2 � �2C2 � i�3D2�;

(B1)

where the � coefficients in parentheses are

A0 � ��2R�M�2�4R2 � 64MR�M2�;

B0 � �96M2R2 cos�;

A1 � �5�2R�M��2R�M�6;

B1 � 16MR�2R�M�4�2R�M� cos�;

C1 � �16M3�2R�M�2�14R2 �MR�M2�

� 672M3R3�2R�M�sin2�;

A2 � 5�2R�M�8;

B2 � 60MR�2R�M�6 cos�;

C2 � 12M12�2R�M�2

 ���2R�M�2�8R2 � 4MR�M2�

� 4R2�12R2 � 4MR� 3M2�sin2��;

D2 � 192M4R cos� ��2R�M�2�4R�M�

� 36R3sin3��:

For simplicity, we factor out � � 64MR3=�2R�M�6

from the Q matrix; to O���, the three eigenvalues of the
reduced Q matrix here are
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1 � 2� i�
24MR cos�

�2R�M�2
;

2 � �1� i�
24MR cos�

�2R�M�2
; 3 � �1:

The desired eigenvalue is 1, which tends to �22 or
3 as �! 0. When the factor � is put back in, the full
eigenvalue is


1 � 128
MR3��2R�M�2 � 12i�MR cos��

�2R�M�8

� 2
M�r� 3ia cos��

r4 ;

where we have interpreted a � M� as the (dimensional)
Kerr spin parameter, reintroduced the Kerr-BL radial vari-
able r � R�M� �M2 � a2�=�4R�, and neglected terms
of higher than linear order. The corresponding eigenvector
will be (any multiple of)

~V �
�

4iMR sin��2R�M�

�2R�M�3
�; 0; 1

�
:

Note that ~V becomes real at � � 0, and at R � M=2.

2. Weyl scalars for head-on data

The data used for the head-on run was of the Brill-
Lindquist type, with holes separated along the y axis.

As an estimate of the radiation content of this data, we
may calculate the Weyl scalars of the approximate solution
above; using the numerical tetrad (A1), we find on the
initial slice:

�0 � ��4 � �48�2M3 �cos2�� cos2�sin2��

�2R�M�5

� 96i�2M3 cos� sin� cos�

�2R�M�5
;

�1 � � ��3 � 48�2M3 �8R�M� sin� cos�sin2�

�2R�M�6

� 48i�2M3 �8R�M� sin� sin� cos�

�2R�M�6
;

�2 �
64MR3

�2R�M�6
� 16�2 M3

�2R�M�7

 �24R2 � 2MR�M2�T��;��; (B2)

where we define T��;�� � 2� 3�cos2�� sin2�cos2��.
For simplicity, we factor out � � 64MR3=�2R�M�6

from the Q matrix; the three eigenvalues of the reduced
Q matrix are

1 � �1;

2 � 2� �2 M
2�24R2 � 2MR�M2�T��;��

2R3�2R�M�
;

3 � �1� �2 M
2�24R2 � 2MR�M2�T��;��

2R3�2R�M�
:

Here the principal eigenvalue is obviously 2, and the
rescaled equivalent is


2 �
128MR3

�2R�M�6

� �2 32M3R3�24R2 � 2MR�M2�T��;��

R3�2R�M�7

�
128MR3

�2R�M�6

�
32d2MR3�24R2 � 2MR�M2�T��;��

R3�2R�M�7

with a related normalized (to O��2�) eigenvector

~V �

��2M2�8R�M� sin� cos�sin2�=2R3

�2M2�8R�M� sin� sin� cos�=2R3

1

2
664

3
775

�

�d2�8R�M� sin� cos�sin2�=2R3

d2�8R�M� sin� sin� cos�=2R3

1

2
664

3
775:

Note that in this case, the normalized eigenvector is
manifestly real everywhere, and so would lead to a degen-
eracy problem in the reconstruction of the quasi-
Kinnersley tetrad, of the type described in Sec. III B.

3. Weyl scalars for QC0 data

The data used for the QC0 run was of the binary Bowen-
York type. We can try to determine some properties of the
slow-close limiting form of this data. This was addressed
by [71], who treated the binary data—with zero-spin holes
separated by L in coordinate space, and transversely
boosted with momenta 
P—as a perturbation of
Schwarzschild with perturbation parameter � � LP=M2.
The authors worked solely in the Zerilli formalism (they
point out that such data is only a perturbation of
Schwarzschild, not of Kerr), and only to O���, where the
Hamiltonian constraint did not need to be solved for
consistency.

Taking this data (separation along the y axis, and boost
in the x direction), the numerical tetrad yields
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�2 �
64MR3

�2R�M�8
��2R�M�2 � 12i�MR cos��;

�1 � ��3

� �
384�M2R4 sin�

�2R�M�9
�4�2R�M� cos� sin� cos�

� 6iR� iM� 4i�2R�M�cos2��;

�0 � ��4

� �
768�M2R4�2R�M�

�2R�M�9
 �cos� sin��1� cos2��

� i cos��1� 2cos2���:

For simplicity, we factor out � � 64MR3=�2R�M�6 from
theQmatrix; the three eigenvalues of the reducedQmatrix
are

1 � 2� i�
24MR cos�

�2R�M�2
;

2 � �1� i�
24MR cos�

�2R�M�2
; 3 � �1:

The desired eigenvalue is 1, which tends to �22 or
3 as �! 0. When the factor � is put back in, the full
eigenvalue is


1 � 128
MR3��2R�M�2 � 12i�MR cos��

�2R�M�8

� 2
M�r� 3ia cos��

r4 ;

where we have interpreted a � �M� as the (dimensional)
Kerr spin parameter, reintroduced the Kerr-BL radial vari-
able r � R�M� �M2 � a2�=�4R�, and neglected terms
of higher than linear order. The corresponding eigenvector
will be (any multiple of):

~V �
�

4iMR sin���6R�M� 4�2R�M�cos2��

�2R�M�3
�;

16iMR sin� cos� sin� cos��

�2R�M�2
�; 1

�
:

Note that ~V becomes real for certain angular positions: e.g., � � 0 for all �, and � � �=2 for � � arccos�
���������������

6R�M
4�2R�M�

q
� !

�=6 for R� M.
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