3,710 research outputs found
Free-Space Antenna Field/Pattern Retrieval in Reverberation Environments
Simple algorithms for retrieving free-space antenna field or directivity
patterns from complex (field) or real (intensity) measurements taken in ideal
reverberation environments are introduced and discussed.Comment: 6 pages, 2 figures, submitted to IEEE Antennas and Wireless
Propagation Letter
Analisis Kedudukan Hukum Islam dalam Sistem Hukum di Indonesia
The legal status of Islam in Indonesia is equivalent to the Dutch East Indies heritage law and customary law. Indonesia\u27s population are Muslim, Islamic law is the source of the development of national law. Islamic law will be determined at the discretion of the national law as the legal government policy. Politicians, Muslim intellectuals and practitioners of Islamic law so to have a role in the enforcement of Islamic law into national law
Kaposi's sarcoma-associated herpesvirus oncoprotein K13 protects against B cell receptor induced growth arrest and apoptosis through NF-κB activation
Kaposi's sarcoma-associated herpesvirus (KSHV) has been linked to the development of Kaposi's sarcoma, primary effusion lymphoma and multicentric Castleman's disease (MCD). We have characterized the role of KSHV-encoded viral FLICE inhibitory protein K13 in the modulation of anti-IgM induced growth arrest and apoptosis in B cells. We demonstrate that K13 protects WEHI 231, an immature B cell line, against anti-IgM induced growth arrest and apoptosis. The protective effect of K13 was associated with the activation of the NF-κB pathway and was deficient in its mutant, K13-58AAA, and a structural homolog, vFLIP E8, which lack NF-κB activity. K13 upregulated the expression of NF-κB subunit RelB and blocked the anti-IgM induced decline in c-Myc and rise in p27(Kip1) that have been associated with growth arrest and apoptosis. K13 also upregulated the expression of Mcl-1, an anti-apoptotic member of the Bcl2 family. Finally, K13 protected the mature B cell line Ramos against anti-IgM induced apoptosis through NF-κB activation. Inhibition of anti-IgM induced apoptosis by K13 may contribute to the development of KSHV-associated lymphoproliferative disorders
Analytical evaluation of the output variability in production systems with general Markovian structure
Performance evaluation models are used by companies to design, adapt, manage and control their production systems. In the literature, most of the effort has been dedicated to the development of efficient methodologies to estimate the first moment performance measures of production systems, such as the expected production rate, the buffer levels and the mean completion time. However, there is industrial evidence that the variability of the production output may drastically impact on the capability of managing the system operations, causing the observed system performance to be highly different from what expected. This paper presents a general methodology to analyze the variability of the output of unreliable single machines and small-scale multi-stage production systems modeled as General Markovian structure. The generality of the approach allows modeling and studying performance measures such as the variance of the cumulated output and the variance of the inter-departure time under many system configurations within a unique framework. The proposed method is based on the characterization of the autocorrelation structure of the system output. The impact of different system parameters on the output variability is investigated and characterized. Moreover, managerial actions that allow reducing the output variability are identified. The computational complexity of the method is studied on an extensive set of computer experiments. Finally, the limits of this approach while studying long multi-stage production lines are highlighted. © 2013 Springer-Verlag Berlin Heidelberg
Generation of mathematical programming representations for discrete event simulation models of timed petri nets
This work proposes a mathematical programming (MP) representation of discrete event simulation of timed Petri nets (TPN). Currently, mathematical programming techniques are not widely applied to optimize discrete event systems due to the difficulty of formulating models capable to correctly represent the system dynamics. This work connects the two fruitful research fields, i.e., mathematical programming and Timed Petri Nets. In the MP formalism, the decision variables of the model correspond to the transition firing times and the markings of the TPN, whereas the constraints represent the state transition logic and temporal sequences among events. The MP model and a simulation run of the TPN are then totally equivalent, and this equivalence has been validated through an application in the queuing network field. Using a TPN model as input, the MP model can be routinely generated and used as a white box for further tasks such as sensitivity analysis, cut generation in optimization procedures, and proof of formal properties
- …