129 research outputs found

    Los Paisanos

    Get PDF

    The 29 July 1994 Merritt Island, Fl Microburst: A Case Study Intercomparing Kennedy Space Center Three-Dimensional Lightning Data (LDAR) and WSR-88D Radar Data

    Get PDF
    Many researchers have shown that the development and evolution of electrical discharges within convective clouds is fundamentally related to the growth and dynamics of precipitation particles aloft. In the presence of strong updrafts above the freezing level collisions among mixed-phase particles (i.e., hail. ice, supercooled water) promote the necessary charge separation needed to initiate intra-cloud lightning. A precipitation core that descends below the freezing level is often accompanied by a change in the electrical structure of the cloud. Consequently, more Cloud-to-Ground (CG) than Intra-Cloud (IC) lightning flashes appear. Descending precipitation cores can also play a significant role in the evolution of mesoscale features at the surface (e.g., microbursts, downbursts) because of latent heat and mass loading effects of water and ice. For this reason, some believe that lightning and microbursts are fundamentally linked by the presence of ice particles in thunderstorms. Several radar and lightning studies of microburst thunderstorms from COHMEX in 1986 showed that the peak IC lightning systematically occurred ten minutes before the onset of a microburst. In contrast, most CG lightning occurred at the time of the microburst. Many of the preceding studies have been done using high-resolution research radars and experimental lightning detection systems in focused field projects. In addition, these studies could only determine the vertical origin or occurrence of IC lightning, and not a true three-dimensional representation. Currently, the WSR-88D radar system and a real-time, state-of-the-art lightning system (LDAR) at the Kennedy Space Center (KSC) in Florida provide an opportunity to extend these kinds of studies in a more meaningful operational setting

    Mass Manufactured Glass Substrates Incorporating Prefabricated Electron Transport Layers for Perovskite Solar Cells

    Get PDF
    A commercially available glass substrate which incorporates both a fluorine‐doped tin oxide and compact TiO2 layer deposited through chemical vapor deposition that is commonly used in “solar control products,” is presented. The substrate, known commercially as Pilkington Eclipse Advantage, is designed for use as an infrared radiation control product and this is the first known instance of it being employed and extensively characterized for use as a mass manufactured n‐type contact in perovskite solar cells. Using this substrate with no additional compact TiO2 layer, perovskite solar cells with PCEs of up to 15.9% are achieved. These devices are superior in performance to those where the compact TiO2 is deposited via spray pyrolysis. The reproducibility and large scale manufacturing base already established with this substrate represents significant potential for solving the problem of upscaling a uniform and pinhole free n‐type compact TiO2 blocking layer

    The design and modification of a parabolic trough system for the hydrothermal liquefaction of waste

    Get PDF
    We describe the design of a small-scale parabolic trough with a high-pressure absorber bundle to convert microalgae into bio-oil. The “proof-of-concept” system uses an existing Global CSP solar captor, with its reflectance enhanced by the addition of Skyfuel¼ ReflecTech Plus polymer film and has its original receiver tube replaced by a novel high-pressure multi-tube absorber and reactor. Initial results obtained at Kota University in Rajasthan, India demonstrated that temperatures up to 320°C are possible, and a bio-oil, similar to palm oil, was extracted from the reactor

    Measuring energy dependent polarization in soft gamma-rays using Compton scattering in PoGOLite

    Full text link
    Linear polarization in X- and gamma-rays is an important diagnostic of many astrophysical sources, foremost giving information about their geometry, magnetic fields, and radiation mechanisms. However, very few X-ray polarization measurements have been made, and then only mono-energetic detections, whilst several objects are assumed to have energy dependent polarization signatures. In this paper we investigate whether detection of energy dependent polarization from cosmic sources is possible using the Compton technique, in particular with the proposed PoGOLite balloon-experiment, in the 25-100 keV range. We use Geant4 simulations of a PoGOLite model and input photon spectra based on Cygnus X-1 and accreting magnetic pulsars (100 mCrab). Effective observing times of 6 and 35 hours were simulated, corresponding to a standard and a long duration flight respectively. Both smooth and sharp energy variations of the polarization are investigated and compared to constant polarization signals using chi-square statistics. We can reject constant polarization, with energy, for the Cygnus X-1 spectrum (in the hard state), if the reflected component is assumed to be completely polarized, whereas the distinction cannot be made for weaker polarization. For the accreting pulsar, constant polarization can be rejected in the case of polarization in a narrow energy band with at least 50% polarization, and similarly for a negative step distribution from 30% to 0% polarization.Comment: 11 pages, 12 figures; updated to match version accepted for publication in Astroparticle Physics (only minor changes

    Clean subglacial access:Prospects for future deep hot-water drilling

    Get PDF
    Accessing and sampling subglacial environments deep beneath the Antarctic Ice Sheet presents several challenges to existing drilling technologies. With over half of the ice sheet believed to be resting on a wet bed, drilling down to this environment must conform to international agreements on environmental stewardship and protection, making clean hot-water drilling the most viable option. Such a drill, and its water recovery system, must be capable of accessing significantly greater ice depths than previous hot-water drills, and remain fully operational after connecting with the basal hydrological system. The Subglacial Lake Ellsworth (SLE) project developed a comprehensive plan for deep (greater than 3000 m) subglacial lake research, involving the design and development of a clean deep-ice hot-water drill. However, during fieldwork in December 2012 drilling was halted after a succession of equipment issues culminated in a failure to link with a subsurface cavity and abandonment of the access holes. The lessons learned from this experience are presented here. Combining knowledge gained from these lessons with experience from other hot-water drilling programmes, and recent field testing, we describe the most viable technical options and operational procedures for future clean entry into SLE and other deep subglacial access targets.</p

    Emission of Circularly Polarized Terahertz Wave from Inhomogeneous Intrinsic Josephson Junctions

    Full text link
    We have theoretically demonstrated the emission of circularly-polarized terahertz (THz) waves from intrinsic Josephson junctions (IJJs) which is locally heated by an external heat source such as the laser irradiation. We focus on a mesa-structured IJJ whose geometry is slightly deviate from a square and find that the local heating make it possible to emit circularly-polarized THz waves. In this mesa, the inhomogeneity of critical current density induced by the local heating excites the electromagnetic cavity modes TM (1,0) and TM (0,1), whose polarizations are orthogonal to each other. The mixture of these modes results in the generation of circularly-polarized THz waves. We also show that the circular polarization dramatically changes with the applied voltage. The emitter based on IJJs can emit circularly-polarized and continuum THz waves by the local heating, and will be useful for various technological application.Comment: 5 pages, 3 figure

    Spatial Variability of Antarctic Surface Snow Bacterial Communities

    Get PDF
    It was once a long-held view that the Antarctic was a pristine environment with low biomass, low biodiversity and low rates of microbial activity. However, as the intensity of scientific investigation has increased, so these views have started to change. In particular, the role and impact of human activity toward indigenous microbial communities has started to come under more intense scrutiny. During the Subglacial Lake Ellsworth exploration campaign in December 2012, a microbiological survey was conducted to determine the extent and likelihood of exogenous input into the subglacial lake system during the hot-water drilling process. Snow was collected from the surface to represent that used for melt water production for hot-water drilling. The results of this study showed that snow used to provide melt water differed in its microbiological composition from that of the surrounding area and raised the question of how the biogeography of snow-borne microorganisms might influence the potential outcome of scientific analyses. In this study, we investigated the biogeography of microorganisms in snow around a series of Antarctic logistic hubs, where human activity was clearly apparent, and from which scientific investigations have been undertaken. A change in microbial community structure with geographical location was apparent and, notably, a decrease in alpha diversity at more remote southern latitudes. Soil-related microorganisms dominated microbial assemblages suggesting terrestrial input, most likely from long-range aeolian transport into continental Antarctica. We also observed that relic DNA was not a major issue when assessing snow samples. Overall, our observations might have profound implications for future scientific activities in Antarctica, such as the need to establish “no-go” protected areas, the need for better characterization of field sites and improved protocols for sterilization and verification of ice drilling equipment

    A study of general practitioners' perspectives on electronic medical records systems in NHS Scotland

    Get PDF
    &lt;b&gt;Background&lt;/b&gt; Primary care doctors in NHSScotland have been using electronic medical records within their practices routinely for many years. The Scottish Health Executive eHealth strategy (2008-2011) has recently brought radical changes to the primary care computing landscape in Scotland: an information system (GPASS) which was provided free-of-charge by NHSScotland to a majority of GP practices has now been replaced by systems provided by two approved commercial providers. The transition to new electronic medical records had to be completed nationally across all health-boards by March 2012. &lt;p&gt;&lt;/p&gt;&lt;b&gt; Methods&lt;/b&gt; We carried out 25 in-depth semi-structured interviews with primary care doctors to elucidate GPs' perspectives on their practice information systems and collect more general information on management processes in the patient surgical pathway in NHSScotland. We undertook a thematic analysis of interviewees' responses, using Normalisation Process Theory as the underpinning conceptual framework. &lt;p&gt;&lt;/p&gt; &lt;b&gt;Results&lt;/b&gt; The majority of GPs' interviewed considered that electronic medical records are an integral and essential element of their work during the consultation, playing a key role in facilitating integrated and continuity of care for patients and making clinical information more accessible. However, GPs expressed a number of reservations about various system functionalities - for example: in relation to usability, system navigation and information visualisation. &lt;b&gt;Conclusion &lt;/b&gt;Our study highlights that while electronic information systems are perceived as having important benefits, there remains substantial scope to improve GPs' interaction and overall satisfaction with these systems. Iterative user-centred improvements combined with additional training in the use of technology would promote an increased understanding, familiarity and command of the range of functionalities of electronic medical records among primary care doctors
    • 

    corecore