17 research outputs found

    Clinical case presentation and a review of the literature of canine onchocercosis by Onchocerca lupi in the United States

    Get PDF
    Background: Onchocerca lupi, a filarioid of zoonotic concern, infects dogs and cats causing ocular lesions of different degrees, from minor to severe. However, infected animals do not always display overt clinical signs, rendering the diagnosis of the infection obscure to the majority of veterinarians. Canine onchocercosis has been reported in the Old World and the information on its occurrence in the United States, as well as its pathogenesis and clinical management is still meagre. This study reports on the largest case series of O. lupi infection from the United States and reviews previous cases of canine onchocercosis in this country. Methods: Information on the clinical history of a series of eight cases of O. lupi infection in dogs diagnosed in Minnesota, New Mexico, Colorado and Florida, from 2011 to 2014, was obtained from clinical records provided the veterinary practitioners. Nematodes were morphologically identified at species level and genetically analyzed. Results: All dogs displayed a similar clinical presentation, including subconjunctival and episcleral nodules, which were surgically removed. Each dog was subjected to post-operative therapy. Whitish filaria-like parasites were morphologically and molecularly identified as O. lupi. Conclusions: This study confirms that O. lupi is endemic in the United States, indicating that the distribution of the infection is probably wider than previously thought. With effect, further studies are urgently needed in order to improve the diagnosis and to assess the efficacy of therapeutic protocols, targeting the parasite itself and/or its endosymbionts

    The James Webb Space Telescope Mission: Optical Telescope Element Design, Development, and Performance

    Full text link
    The James Webb Space Telescope (JWST) is a large, infrared space telescope that has recently started its science program which will enable breakthroughs in astrophysics and planetary science. Notably, JWST will provide the very first observations of the earliest luminous objects in the Universe and start a new era of exoplanet atmospheric characterization. This transformative science is enabled by a 6.6 m telescope that is passively cooled with a 5-layer sunshield. The primary mirror is comprised of 18 controllable, low areal density hexagonal segments, that were aligned and phased relative to each other in orbit using innovative image-based wavefront sensing and control algorithms. This revolutionary telescope took more than two decades to develop with a widely distributed team across engineering disciplines. We present an overview of the telescope requirements, architecture, development, superb on-orbit performance, and lessons learned. JWST successfully demonstrates a segmented aperture space telescope and establishes a path to building even larger space telescopes.Comment: accepted by PASP for JWST Overview Special Issue; 34 pages, 25 figure

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Canine infections with Onchocerca lupi nematodes, United States, 2011–2014

    No full text
    Infections with Onchocerca lupi nematodes are diagnosed sporadically in the United States. We report 8 cases of canine onchocercosis in Minnesota, New Mexico, Colorado, and Florida. Identification of 1 cytochrome c oxidase subunit 1 gene haplotype identical to 1 of 5 from Europe suggests recent introduction of this nematode into the United States

    Rights of Pachamama: The emergence of an earth jurisprudence in the Americas

    No full text
    Earth jurisprudence represents an alternative approach to the law based on the belief that nature has rights. In this view, a river has the right to flow, species have the right to continue to exist in the wild, and ecosystems have the right to adapt and evolve over time. Proponents of Earth jurisprudence argue that, by treating nature as exploitable resources, contemporary legal systems actively promote environmental harms. Recognising rights of nature, they argue, will transform core values and inspire social changes that promote economic development which respects nature’s limits. Since 2006, rights of nature have been recognised by some sub-federal public bodies in the United States and by the governments of Ecuador and Bolivia. This paper sets out to answer two questions. First, what explains the legal recognition of rights of nature in Ecuador and Bolivia? Second, what factors impede a wider adoption and implementation of Earth jurisprudence? Amongst the constraints, it will be argued, is that Ecuador and Bolivia continue to pursue an extractivist economic development model, with assertions of national sovereignty over natural resources tending to prevail over Earth jurisprudence and environmental conservation

    Animal population decline and recovery after severe fire: Relating ecological and life history traits with expert estimates of population impacts from the Australian 2019-20 megafires

    Get PDF
    Catastrophic megafires can increase extinction risks identifying species priorities for management and policy support is critical for preparing and responding to future fires. However, empirical data on population loss and recovery post-fire, especially megafire, are limited and taxonomically biased. These gaps could be bridged if species' morphological, behavioural, ecological and life history traits indicated their fire responses. Using expert elicitation that estimated population changes following the 2019–20 Australian megafires for 142 terrestrial and aquatic animal species (from every vertebrate class, one invertebrate group), we examined whether expert estimates of fire-related mortality, mortality in the year post-fire, and recovery trajectories over 10 years/three generations post-fire, were related to species traits. Expert estimates for fire-related mortality were lower for species that could potentially flee or shelter from fire, and that associated with fire-prone habitats. Post-fire mortality estimates were linked to diet, diet specialisation, home range size, and susceptibility to introduced herbivores that damage or compete for resources. Longer-term population recovery estimates were linked to diet/habitat specialisation, susceptibility to introduced species species with slower life histories and shorter subadult dispersal distances also had lower recovery estimates. Across animal groups, experts estimated that recovery was poorest for species with pre-fire population decline and more threatened conservation status. Sustained management is likely needed to recover species with habitat and diet specialisations, slower life histories, pre-existing declines and threatened conservation statuses. This study shows that traits could help inform management priorities before and after future megafires, but further empirical data on animal fire response is essential

    The conservation impacts of ecological disturbance:Time-bound estimates of population loss and recovery for fauna affected by the 2019–2020 Australian megafires

    Get PDF
    Aim: After environmental disasters, species with large population losses may need urgent protection to prevent extinction and support recovery. Following the 2019-2020 Australian megafires, we estimated population losses and recovery in fire-affected fauna, to inform conservation status assessments and management. Location: Temperate and subtropical Australia. Time period 2019-2030 and beyond. Major taxa: Australian terrestrial and freshwater vertebrates; one invertebrate group. Methods: From > 1,050 fire-affected taxa, we selected 173 whose distributions substantially overlapped the fire extent. We estimated the proportion of each taxon's distribution affected by fires, using fire severity and aquatic impact mapping, and new distribution mapping. Using expert elicitation informed by evidence of responses to previous wildfires, we estimated local population responses to fires of varying severity. We combined the spatial and elicitation data to estimate overall population loss and recovery trajectories, and thus indicate potential eligibility for listing as threatened, or uplisting, under Australian legislation. Results: We estimate that the 2019-2020 Australian megafires caused, or contributed to, population declines that make 70-82 taxa eligible for listing as threatened; and another 21-27 taxa eligible for uplisting. If so-listed, this represents a 22-26% increase in Australian statutory lists of threatened terrestrial and freshwater vertebrates and spiny crayfish, and uplisting for 8-10% of threatened taxa. Such changes would cause an abrupt worsening of underlying trajectories in vertebrates, as measured by Red List Indices. We predict that 54-88% of 173 assessed taxa will not recover to pre-fire population size within 10 years/three generations. Main conclusions We suggest the 2019-2020 Australian megafires have worsened the conservation prospects for many species. Of the 91 taxa recommended for listing/uplisting consideration, 84 are now under formal review through national processes. Improving predictions about taxon vulnerability with empirical data on population responses, reducing the likelihood of future catastrophic events and mitigating their impacts on biodiversity, are critical

    Mapping the human genetic architecture of COVID-19

    Get PDF
    The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-191,2, host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across 19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases3–7. They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease
    corecore