1,219 research outputs found

    Relationships among Maximal and Explosive Strength Production of the Leg Extensors and Vertical Jump Peak Power Output in Female Youth Volleyball Athletes

    Get PDF
    ABSTRACT Architectural and physical performance measurements are commonly implemented to identify various physical capacities in many populations. However, previous research has suggested architectural measures, notably in the leg extensors, are ineffective predictors of vertical jumping (VJ) performance. Given the functional relevance of rapid strength development on explosive dynamic tasks, further research is warranted examining, a) the presence of associations of maximal (e.g., peak torque; PT) and, in particular, explosive (e.g., rate of torque development; RTD) strength-related characteristics with jumping performance in the leg extensors, and b) the extent to which PT and RTD either uniquely, or synergistically contribute to VJ performance. The purpose of this study was to examine the relationships between isometric maximal and explosive strength measures of the leg extensors and VJ peak power (PP) output in female youth volleyball athletes. Thirty (mean ±SD, range: age= 13.73±1.11, 12-17 years, height=162.53±6.39 cm, body mass=57.84±12.05 kg) female youth competitive volleyball players reported to the laboratory on two occasions, with the first visit being a familiarization session. The second visit involved experimental testing, in which participants performed two isometric maximal voluntary contractions of the leg extensors on a dynamometer at a leg angle of 60º, followed by three countermovement VJ trials. Subjects performed countermovement jumps, starting in a standing position and feet firmly on the ground. Following the descent to the midpoint position and without pause, the subjects exploded upward as hard and fast as possible. PT and RTD were calculated as the highest 500ms epoch and the slope of the rise in torque in the first 200ms from onset, respectively. Lower-body PP was assessed using a linear velocity transducer, which was attached to the posterior side of a belt that was securely fastened to the subjects’ waistline. Pearson correlation (r) and stepwise linear regression analyses were performed to examine the relationships. Results indicated that both PT (r=0.7) and late RTD (r=0.62) were significantly correlated to PP (p≤0.01). However, linear regression analysis revealed that PT was the only variable entered into the stepwise regression model (R=0.71; R²=0.50). These findings showed that while both maximal and explosive strength variables correlated with VJ performance, only PT was necessary to effectively predict PP output with no additional explained variance from RTD. Thus, training regimens aimed at development of high force production of the leg extensors may enhance PP production during explosive vertical jump tasks more so than enhancing early rapid force production

    Turbulent drag reduction by spanwise wall forcing. Part 1: Large-eddy simulation

    Get PDF
    Turbulent drag reduction through streamwise travelling waves of spanwise wall oscillation is investigated over a wide range of Reynolds numbers. Here, in Part 1, wall-resolved large-eddy simulations in a channel flow are conducted to examine how the frequency and wavenumber of the travelling wave influence the drag reduction at friction Reynolds numbers Reτ=951Re_\tau = 951 and 40004000. The actuation parameter space is restricted to the inner-scaled actuation (ISA) pathway, where drag reduction is achieved through direct attenuation of the near-wall scales. The level of turbulence attenuation, hence drag reduction, is found to change with the near-wall Stokes layer protrusion height 0.01\ell_{0.01}. A range of frequencies is identified where the Stokes layer attenuates turbulence, lifting up the cycle of turbulence generation and thickening the viscous sublayer; in this range, the drag reduction increases as 0.01\ell_{0.01} increases up to 3030 viscous units. Outside this range, the strong Stokes shear strain enhances near-wall turbulence generation leading to a drop in drag reduction with increasing 0.01\ell_{0.01}. We further find that, within our parameter and Reynolds number space, the ISA pathway has a power cost that always exceeds any drag reduction savings. This motivates the study of the outer-scaled actuation (OSA) pathway in Part 2, where drag reduction is achieved through actuating the outer-scaled motions

    Leg Lean Mass Adaptations Following Short-Term Barbell Training in Women

    Get PDF
    Participation in a resistance training program results in both neural adaptations and increases in lean body mass, the latter of which is considered a slow process. The majority of previous investigations that have examined the time course associated with muscular adaptations have utilized exercise machines or single-joint movements. Furthermore, the adaptations associated with resistance training in women are not as well understood as those for men. The purpose of this investigation was to examine the effects of a four week resistance training intervention on changes in leg lean mass in untrained, college-aged women. Thirty-five women (mean ± SD age = 21 ± 3 years; body mass = 61.9 ± 10.4 kg) with no previous lower-body strength training experience were randomly assigned to high volume training (n = 11), low volume training (n = 10), and control (n = 14) groups. The training groups performed the barbell back squat and deadlift twice per week for four weeks. The low volume training group performed five repetitions of two sets per exercise; the high volume group performed an additional two sets per exercise. The external loads were increased progressively during each training session. The mean ± SD external loads used in this study increased from 27.9 ± 8.2 to 51.4 ± 14.0 kg for the barbell back squat and from 34.2 ± 7.7 to 60.2 ± 10.1 kg for the deadlift. Body composition analyses were performed during pre- and post-testing with dual X-ray absorptiometry. Manufacturer provided software was used to determine the appropriate region of interest in the assessment of leg lean mass. An analysis of covariance was used to compare the post-test data, and the pre-test data were used as the covariate. The results indicated that there was a statistically significant difference among the adjusted post-test means. Specifically, when the pre-test scores served as the covariate, the mean leg lean mass for the high volume training group was 0.503 kg greater than that for the control group (p = 0.031, 95% CI for adjusted mean difference = 0.038 to 0.968 kg). The pre-test – post-test effect sizes for the high volume training and low volume training groups were 0.31 and 0.29, respectively. Collectively, these findings demonstrated that a four week, high-volume training program involving barbell back squats and deadlifts produced small increases in leg lean mass in previously untrained women

    Indirect eff ects of childhood pneumococcal conjugate vaccination on invasive pneumococcal disease: a systematic review and meta-analysis

    Get PDF
    Background The full extent to which childhood pneumococcal conjugate vaccines (PCV) can indirectly reduce illness in unvaccinated populations is not known. We aimed to estimate the magnitude and timing of indirect eff ects of PCVs on invasive pneumococcal disease. Methods In this systematic review and meta-analysis, we searched bibliographic databases for non-randomised quasiexperimental or observational studies reporting invasive pneumococcal disease changes following PCV introduction in unvaccinated populations (studies published Sept 1, 2010, to Jan 6, 2016), updating the previous systematic review of the same topic (studies published Jan 1, 1994, to Sept 30, 2010). Two reviewers extracted summary data by consensus. We used a Bayesian mixed-eff ects model to account for between-study heterogeneity to estimate temporal indirect eff ects by pooling of invasive pneumococcal disease changes by serotype and serogroup. Findings Data were extracted from 70 studies included in the previous review and 172 additional studies, covering 27 high-income and seven middle-income countries. The predicted mean times to attaining a 90% reduction in invasive pneumococcal disease were 8·9 years (95% credible interval [CrI] 7·8–10·3) for grouped serotypes contained in the seven-valent PCV (PCV7), and 9·5 years (6·1–16·6) for the grouped six additional serotypes contained in the 13-valent PCV (PCV13) but not in PCV7. Disease due to grouped serotypes contained in the 23-valent pneumococcal polysaccharide vaccine (PPV23) decreased at similar rates per year in adults aged 19–64 years (relative risk [RR] 0·85, 95% CrI 0·75–0·95) and 65 years and older (0·87, 0·84–0·90). However, we noted no changes in either group in invasive pneumococcal disease caused by the additional 11 serotypes covered by PPV23 but not PCV13. Interpretation Population childhood PCV programmes will lead, on average, to substantial protection across the whole population within a decade. This large indirect protection should be considered when assessing vaccination of older age groups

    Turbulent drag reduction by spanwise wall forcing. Part 2: High-Reynolds-number experiments

    Get PDF
    Here, we present measurements of turbulent drag reduction at high friction Reynolds numbers in the range of 4500Reτ150004500 \le Re_\tau \le 15000. The efficacy of the approach, using streamwise travelling waves of spanwise wall oscillations, is studied for two actuation regimes: (i) inner-scaled actuation (ISA), as investigated in Part 1 of this study, which targets the relatively high-frequency structures of the near-wall cycle, and (ii) outer-scaled actuation (OSA), which was recently presented by Marusic et al. (Nat. Commun., vol. 12, 2021) for high-ReτRe_\tau flows, targeting the lower-frequency, outer-scale motions. Multiple experimental techniques were used, including a floating-element balance to directly measure the skin-friction drag force, hot-wire anemometry to acquire long-time fluctuating velocity and wall-shear stress, and stereoscopic-PIV (particle image velocimetry) to measure the turbulence statistics of all three velocity components across the boundary layer. Under the ISA pathway, drag reduction of up to 25% was achieved, but mostly with net power saving losses due to the high-input power cost associated with the high-frequency actuation. The low-frequency OSA pathway, however, with its lower input power requirements, was found to consistently result in positive net power savings of 5 - 10%, for moderate drag reductions of 5 - 15%. The results suggest that OSA is an attractive pathway for energy-efficient drag reduction in high Reynolds number applications. Both ISA and OSA strategies are found to produce complex inter-scale interactions, leading to attenuation of the turbulent fluctuations across the boundary layer for a broad range of length and time scales

    Isokinetic Fatigue Characteristics for the Leg Extensors versus Flexors

    Get PDF
    Maximal isokinetic muscle actions are often used in research studies to examine fatigability and even estimate muscle fiber-type. However, the majority of previous investigations have examined these topics for the leg extensors (i.e., quadriceps), and we are unaware of investigations that have specifically assessed the fatigue characteristics for the flexors (i.e., hamstrings). The purpose of this study was to compare the percent decline values for the leg extensors versus flexors for 50 and 100 repeated, maximal concentric isokinetic muscle actions. Fifteen healthy men (mean ± SD age = 23 ± 3 years; body mass = 94.1 ± 11.9 kg) with previous lower-body strength training experience volunteered to participate in this study. All of the subjects were familiarized with the testing procedures prior to data collection. For data collection, each subject performed 100 repeated, maximal concentric isokinetic muscle actions of the left leg extensors and flexors in a reciprocal manner. Each muscle action was performed at 180 degrees/second through a full 90 degree range of motion. Strong verbal encouragement was provided throughout testing. Percent decline was determined using the mean peak torque values of the initial and final three muscle actions for each muscle group (i.e., extensors versus flexors) and condition (i.e., 50 versus 100 repetitions). A two-way repeated measure analysis of variance was used to examine the data. The mean ± SD percent decline for the leg extensors was 61.8 ± 7.8 and 71.2 ± 6.5% for the 50 and 100 conditions, respectively (Cohen’s d = 1.31). For the leg flexors, these corresponding values were 48.0 ± 12.2 and 54.3 ± 11.7 % (Cohen’s d = 0.53). There was no significant muscle group × condition interaction (p= .114; partial eta squared = .169) There were, however, main effects for both factors. The bonferroni marginal mean pairwise comparisons indicated that when collapsed across condition, the leg extensors fatigued more so than the flexors (66.5 vs. 51.2%). Similarly, when collapsed across muscle group, the percent decline values were greater following 100 (62.8%) versus 50 (54.9%) repetitions. These finding demonstrated greater isokinetic fatigue characteristics for the leg extensors versus flexors. Furthermore, the additional decline in peak torque from repetitions 50-100 was more pronounced for the extensors. We speculate that these findings could be related to differences in muscle fiber-type, lower absolute strength and mass for the posterior aspect of the thigh, and/or unfamiliarity with single-joint testing of the leg flexors

    Searching for Compton-thick active galactic nuclei at z~0.1

    Full text link
    Using a suite of X-ray, mid-IR and optical active galactic nuclei (AGN) luminosity indicators, we search for Compton-thick (CT) AGNs with intrinsic L_X>10^42erg/s at z~0.03-0.2, a region of parameter space which is currently poorly constrained by deep narrow-field and high-energy (E>10keV) all-sky X-ray surveys. We have used the widest XMM-Newton survey (the serendipitous source catalogue) to select a representative sub-sample (14; ~10%) of the 147 X-ray undetected candidate CT AGNs in the Sloan Digital Sky Survey (SDSS) with f_X/f_[OIII]<1; the 147 sources account for ~50% of the overall Type-2 AGN population in the SDSS-XMM overlap region. We use mid-IR spectral decomposition analyses and emission-line diagnostics, determined from pointed Spitzer-IRS spectroscopic observations of these candidate CT AGNs, to estimate the intrinsic AGN emission (predicted L_X,2-10keV (0.2-30)x10^42erg/s). On the basis of the optical [OIII], mid-IR [OIV] and 6um AGN continuum luminosities we conservatively find that the X-ray emission in at least 6/14 (>43%) of our sample appear to be obscured by CT material with N_H>1.5x10^24cm^-2. Under the reasonable assumption that our 14 AGNs are representative of the overall X-ray undetected AGN population in the SDSS-XMM parent sample, we find that >20% of the optical Type-2 AGN population are likely to be obscured by CT material. This implies a space-density of log(Phi) >-4.9Mpc^-3 for CT AGNs with L_X>10^42erg/s at z~0.1, which we suggest may be consistent with that predicted by X-ray background synthesis models. Furthermore, using the 6um continuum luminosity to infer the intrinsic AGN luminosity and the stellar velocity dispersion to estimate M_BH, we find that the most conservatively identified CT AGNs in this sample may harbour some of the most rapidly growing black holes (median M_BH~3x10^7M_o) in the nearby Universe, with a median Eddington ratio of ~0.2.Comment: 16 pages, 2 tables, 6 figures. Accepted for publication in MNRA

    Relationships Between Anthropometric and Performance Variables in Youth: Predictors of Lower-Body Vertical Jump Peak Power

    Get PDF
    ABSTRACT Anthropometric and physical performance measurements are commonly used for identifying specific physical traits in youth. Laboratory-based tests (e.g., linear velocity transducers), while accurate, provide practical limitations due to high costs and technical necessities. Thus, commonly used field tests may be useful alternatives for assessing fitness/performance characteristics of youth. The purpose of this study was to examine the relationships between anthropometric measures and lower-and upper-body power and strength measures; and to assess the predictive ability of these measures for lower-body vertical jump peak power (PP) output in youth. Thirty-nine pre-adolescent (mean±SD, range: age=7.8±1.7, 5-12 years) children volunteered to participate in this investigation. Subjects were measured for body mass and stature on a calibrated physicians scale. Lower-body PP was assessed using a linear velocity transducer, which was attached to the posterior side of a belt that was securely fastened to the subjects’ waistline. Subjects performed countermovement jumps, starting in a standing position, with hands placed on hips and feet firmly on the ground. Following the descent to the midpoint position and without pause, the subjects exploded upward as hard and fast as possible. Broad jump testing involved subjects performing a countermovement jump in the horizontal direction, on a scaled mat. Maximum isometric hand grip strength of the dominant hand was assessed using a dynamometer. For all testing, 1-2 practice trials were performed, followed by testing consisting of 2-3 trials. The highest trial was used for analyses. Peak power values were normalized to body mass using allometric scaling procedures (PP· body mass-0.67). Pearson correlation (r) and stepwise linear regression analyses were performed to examine the relationships. Results indicated all variables (age, stature, body mass, broad jump and grip strength) were significantly correlated (r=0.38-0.64) to PP. Age was correlated to all variables (r=0.39-0.82) and stature and body mass were correlated to all variables (r=0.37-0.77) except broad jump. Broad jump was correlated only to age (r=0.39) and PP (r=0.38). Linear regression for all variables revealed that stature was the only variable entered into the model (R=0.64; R2=0.41). With the anthropometric variables removed, grip strength was the only variable entered into the model (R=0.57; R2=0.32). These findings suggest that while all the anthropometric and performance variables may be correlated to PP, only stature and grip strength were effective, and thus, necessary to predict PP abilities. Interestingly, broad jump performance was not a good predictor of lower body vertical PP

    Neurite orientation and dispersion density imaging (NODDI) detects cortical and corticospinal tract degeneration in ALS

    Get PDF
    Background: Corticospinal tract (CST) degeneration and cortical atrophy are consistent features of amyotrophic lateral sclerosis (ALS). We hypothesised that neurite orientation dispersion and density imaging (NODDI), a multicompartment model of diffusion MRI, would reveal microstructural changes associated with ALS within the CST and precentral gyrus (PCG) ‘in vivo’. Methods: 23 participants with sporadic ALS and 23 healthy controls underwent diffusion MRI. Neurite density index (NDI), orientation dispersion index (ODI) and free water fraction (isotropic compartment (ISO)) were derived. Whole brain voxel-wise analysis was performed to assess for group differences. Standard diffusion tensor imaging (DTI) parameters were computed for comparison. Subgroup analysis was performed to investigate for NODDI parameter differences relating to bulbar involvement. Correlation of NODDI parameters with clinical variables were also explored. The results were accepted as significant where p<0.05 after family-wise error correction at the cluster level, clusters formed with p<0.001. Results: In the ALS group NDI was reduced in the extensive regions of the CST, the corpus callosum and the right PCG. ODI was reduced in the right anterior internal capsule and the right PCG. Significant differences in NDI were detected between subgroups stratified according to the presence or absence of bulbar involvement. ODI and ISO correlated with disease duration. Conclusions: NODDI demonstrates that axonal loss within the CST is a core feature of degeneration in ALS. This is the main factor contributing to the altered diffusivity profile detected using DTI. NODDI also identified dendritic alterations within the PCG, suggesting microstructural cortical dendritic changes occur together with CST axonal damage
    corecore