41 research outputs found

    Improving Access to Physical Activity: Revitalizing the Old Kona Airport Walking/Jogging Path

    Get PDF
    Environmental approaches to increase access to physical activity facilities are recommended for promoting physical activity. People with easy access to recreational facilities are more likely to achieve the recommended levels of physical activity, and neighborhoods that are walkable and provide access to public parks and jogging trails are associated with higher levels of activity. Friends for Fitness, a grassroots organization in West Hawai‘i spearheaded a community-based planning process and intervention to revitalize the Old Kona Airport into a walking/jogging trail. Through community engagement, support from local media and businesses, and volunteers, Friends for Fitness succeeded in increasing physical activity among residents. After three years, the number of walkers utilizing the trail increased more than 20%

    Transcriptome Analysis of Synaptoneurosomes Identifies Neuroplasticity Genes Overexpressed in Incipient Alzheimer's Disease

    Get PDF
    In Alzheimer's disease (AD), early deficits in learning and memory are a consequence of synaptic modification induced by toxic beta-amyloid oligomers (oAβ). To identify immediate molecular targets downstream of oAβ binding, we prepared synaptoneurosomes from prefrontal cortex of control and incipient AD (IAD) patients, and isolated mRNAs for comparison of gene expression. This novel approach concentrates synaptic mRNA, thereby increasing the ratio of synaptic to somal mRNA and allowing discrimination of expression changes in synaptically localized genes. In IAD patients, global measures of cognition declined with increasing levels of dimeric Aβ (dAβ). These patients also showed increased expression of neuroplasticity related genes, many encoding 3′UTR consensus sequences that regulate translation in the synapse. An increase in mRNA encoding the GluR2 subunit of the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) was paralleled by elevated expression of the corresponding protein in IAD. These results imply a functional impact on synaptic transmission as GluR2, if inserted, maintains the receptors in a low conductance state. Some overexpressed genes may induce early deficits in cognition and others compensatory mechanisms, providing targets for intervention to moderate the response to dAβ

    How I Treat Vitamin D Deficiency

    No full text

    Structure and elevator mechanism of the mammalian sodium/proton exchanger NHE9

    No full text
    Na+/H+ exchangers (NHEs) are ancient membrane-bound nanoma- chines that work to regulate intracellular pH, sodium levels and cell volume. NHE activities contribute to the control of the cell cycle, cell proliferation, cell migration and vesicle trafficking. NHE dysfunction has been linked to many diseases, and they are targets of pharma- ceutical drugs. Despite their fundamental importance to cell home- ostasis and human physiology, structural information for the mammalian NHEs was lacking. Here, we report the cryogenic elec- tron microscopy structure of NHE isoform 9 (SLC9A9) from Equus caballus at 3.2 AÌŠ resolution, an endosomal isoform highly expressed in the brain and associated with autism spectrum (ASD) and atten- tion deficit hyperactivity (ADHD) disorders. Despite low sequence identity, the NHE9 architecture and ion-binding site are remarkably most similar to distantly related bacterial Na+/H+ antiporters with 13 transmembrane segments. Collectively, we reveal the conserved architecture of the NHE ion-binding site, their elevator-like structural transitions, the functional implications of autism disease mutations and the role of phosphoinositide lipids to promote homodimerization that, together, have important physiological ramifications

    Differential Toll-like receptor recognition and induction of cytokine profile by Bifidobacterium breve and Lactobacillus strains of probiotics

    Get PDF
    Contains fulltext : 97823.pdf (publisher's version ) (Open Access)The use of probiotics as a food supplement has gained tremendous interest in the last few years as beneficial effects were reported in gut homeostasis and nutrient absorption but also in immunocompromised patients, supporting protection from colonization or infection with pathogenic bacteria or fungi. As a treatment approach for inflammatory bowel diseases, a suitable probiotic strain would ideally be one with a low immunogenic potential. Insight into the immunogenicities and types of T-cell responses induced by potentially probiotic strains allows a more rational selection of a particular strain. In the present study, the bacterial strains Bifidobacterium breve (NumRes 204), Lactobacillus rhamnosus (NumRes1), and Lactobacillus casei (DN-114 001) were compared concerning their capacity to induce inflammatory responses in terms of cytokine production by human and mouse primary immune cells. It was demonstrated that the B. breve strain induced lower levels of the proinflammatory cytokine gamma interferon (IFN-gamma) than the tested L. rhamnosus and L. casei strains. Both B. breve and lactobacilli induced cytokines in a Toll-like receptor 9 (TLR9)-dependent manner, while the lower inflammatory profile of B. breve was due to inhibitory effects of TLR2. No role for TLR4, NOD2, and C-type lectin receptors was apparent. In conclusion, TLR signaling is involved in the differentiation of inflammatory responses between probiotic strains used as food supplements
    corecore