34 research outputs found

    Canopy soil nutrient cycling and response to elevated nutrient levels along an elevation gradient of tropical montane forests

    Get PDF
    Obwohl Böden des Kronendachs (canopy soils) deutlich zur oberiridischen labilen Biomasse beitragen können, werden sie oft in Studien ĂŒber NĂ€hrstoffkreislĂ€ufe ĂŒbersehen. In WĂ€ldern mit einem großen Vorkommen an Böden im Kronendach, wie beispielsweise jene in tropischen Bergregionen, könnte dies zu einem unvollstĂ€ndigen VerstĂ€ndnis der Gesamt-NĂ€hrstoffprozesse des Waldes beitragen. Böden im Kronendach sind Ansammlungen organischen Materials, welche gewöhnlich auf Zweigen von BĂ€umen tropischer WĂ€lder zu finden sind. Sie bestehen in erster Linie aus zersetztem epiphytischen Material aber umfassen auch herunterfallendes Laub, Staub, wirbellose Tiere, Pilze und Mikroorganismen. Es gibt nur eine Handvoll Studien, die Stickstoff (N) KreislĂ€ufe und/oder Treibhausgas (THG) FlĂŒsse in Böden des Kronendachs untersucht haben und keine hat versucht die tatsĂ€chlichen Feldraten zu bestimmen oder herauszufinden, wie sich diese Böden – welche besonders sensibel gegenĂŒber atmosphĂ€rischen Prozessen sind – mit NĂ€hrstoffdeposition Ă€ndern könnten. Diese Dissertation stellt die Ergebnisse einer Forschungsstudie dar, welche N-Umsatzraten und THG FlĂŒsse von Böden des Kronendachs quantifiziert und untersucht, wie diese Raten durch zunehmende Mengen an N und Phosphor (P) im Boden verĂ€ndert werden. In Gebieten mit atmosphĂ€rischer N- und P-Deposition, erhalten Böden des Kronendaches sowohl direkte als auch indirekte NĂ€hrstoffeintrĂ€ge auf Grund von angereichertem Bestandsniederschlag und Pflanzenstreu. Es wurden folgende Umsatzraten in Böden des Kronendachs tropische BergwĂ€lder entlang eines Höhengradienten (1000 m , 2000 m , 3000 m) gemessen: (1) asymbiotische biologische N2-Fixierung, (2) Netto- und Brutto-N-Transformation, und (3) Kohlendioxid (CO2), Methan (CH4) und Lachgas (N2O) FlĂŒsse. Zudem wurden indirekte Auswirkungen von N-und P-Gaben, die auf dem Waldboden ausgebracht wurden, untersucht. Umsatzraten der N2-Fixierung, des N Kreislaufes und von THG FlĂŒssen, welche in Böden des Kronendachs gemessen wurden, wurden mit denen vom Waldboden verglichen (entweder als Teil dieser Arbeit oder in parallelen Studien von zwei anderen Mitgliedern unserer Arbeitsgruppe), um die AktivitĂ€t von Böden des Kronendachs in den Kontext des gesamten Waldes zu stellen. N2-Fixierung wurde mit der Acetylenreduktionsmethode, Netto-N-Umsatzraten wurden mittels in situ Inkubationen (buried bag method) und Brutto-N-Umsatzraten wurden mit der 15N-VerdĂŒnnungsmethode (15N pool dilution technique) bestimmt. GasflĂŒsse wurden sowohl unter Verwendung statischer Kammern gemessen, deren Sockel permanent im Boden angebracht waren, als auch unter Verwendung regelmĂ€ĂŸig entfernter intakter Bodenproben, die zur Gasmessung in luftdichten EinweckglĂ€sern inkubiert wurden. Messungen der N2-Fixierung und des N Kreislaufes erfolgten wĂ€hrend der Regen- und Trockenzeit im Feld unter Verwendung intakter Bodenproben. THG Messungen wurden fĂŒnf Mal wĂ€hrend des Zeitraumes von einem Jahr durchgefĂŒhrt. Der Waldboden unserer Standorte war 4 Jahre lang zweimal im Jahr mit moderaten Mengen an N ( 50 kg N ha-1 Jahr-1) und P (10 kg P ha-1 Jahr-1) gedĂŒngt worden und umfasste folgende Behandlungen: Kontrolle, N-, P- und N+P-Zugaben. Das Kronendach trug 7-13 % zur gesamten Boden N2-Fixierung (Kronendach + Waldboden) bei, welche zwischen 0,8 und 1,5 kg N ha-1 Jahr-1 lag. N2-Fixierungsraten verĂ€nderten sich nur geringfĂŒging mit der Höhenstufe, waren aber in der Trockenzeit deutlich höher als in der Regenzeit. N2-Fixierung im Waldboden wurde in N-Parzellen im Vergleich zu Kontroll- und P-Parzellen gehemmt, wĂ€hren sie in Böden des Kronendachs in P-Parzellen im Vergleich zu Kontrollparzellen stimuliert wurde. Böden des Kronendachs trugen bis zu 23% zur gesamten mineralischen N-Produktion (Kronendach + Waldboden) bei; Brutto-N-Mineralisierung in Böden des Kronendachs lag zwischen 1,2 und 2,0 mg N kg-1 d-1. In Kontrollparzellen nahmen Brutto-Umsatzraten von Ammonium (NH4+) mit zunehmender Höhe ab, wohingegen Brutto-Umsatzraten von Nitrat (NO3-) keinen klaren Trend mit der Höhenstufe aufwiesen, aber signifikant durch die Saison beeinflusst wurden. Effekte durch NĂ€hrstoff-Zugabe unterschieden sich je nach Höhenstufe, aber kombinierte N+P-Zugabe erhöhte in der Regel auf allen Höhenstufen die N-Umsatzraten. CO2 Emissionsraten von Böden des Kronendachs berechnet auf der Basis der FlĂ€che von Gaskammern (10,5 bis 109,5 mg CO2-C m-2 h-1) waren Ă€hnlich denen vom Waldboden Ă€hnlich und nahmen mit zunehmender Höhenstufe ab. Emissionen vom Kronendach, berechnet auf der Basis der WaldflĂ€che (0,15 bis 0,51 Mg CO2-C m-2 h-1), machten jedoch nur 5-11% der gesamten Boden-CO2 Emissionen (Kronendach + Waldboden) aus. CH4 FlĂŒsse (-0,07 bis 0,02 kg CH4-C ha-1 Jahr-1) und N2O FlĂŒsse (0,00 bis 0,01 kg N2O-N ha-1 Jahr-1) von Böden des Kronendachs machten weniger als 5% der GesamtflĂŒsse von Böden aus. P-Zugabe reduzierte CH4 Emissionen in allen Höhenstufen, so dass Böden des Kronendachs als leichte CH4 Senken agierten (-10,8 bis -2,94 ÎŒg CH4-C m-2 h-1). Nur in 2000 m wurden Böden des Kronendachs unter N Zugabe zu leichten N2O Quellen (2,43 ± 3,72 ÎŒg N2O-N m-2 h-1), wohingegen P Zugabe die CO2 emissionen um ungefĂ€hr 50% reduzierte. Die Ergebnisse zeigen, dass Böden des Kronendachs eine aktive Mikrobengemeinschaft besitzen, welche wertvolle Dienstleistungen hinsichtlich von NĂ€hrstoffkreislĂ€ufen fĂŒr das Ökosystem des Kronendachs erbringt. ZusĂ€tzlich, war der NĂ€hrstoffkreislauf der Böden des Kronendachs in unseren WĂ€ldern eindeutig an die NĂ€hrstoffverfĂŒgbarkeit des Waldbodens gekoppelt, was im Gegensatz zu Theorien steht, die besagen dass Böden des Kronendachs vom NĂ€hrstoffkreislauf der Waldböden entkoppelt seien. Wir haben festgestellt, dass Böden des Kronendachs in höheren Lagen eher einen wesentlichen Anteil des gesamten Wald-NĂ€hrstoffkreislaufes ausmachen; dies sollte in Studien berĂŒcksichtigt werden, die sich mit NĂ€hrstoffkreislĂ€ufen solcher Gegenden beschĂ€ftigen. Langfristige atmosphĂ€rische N- und P-Deposition verfĂŒgt ĂŒber das Potenzial, die Dynamik von NĂ€hrstoffflĂŒssen im Kronendach erheblich zu verĂ€ndern. N-Deposition könnte die N2-Fixierung hemmen, wobei “hotspots“ weiterhin in Bereichen mit großen Mengen an P vorkommen. Interne N-KreislĂ€ufe in Böden des Kronendachs werden wahrscheinlich durch N -und P-Deposition stimuliert werden, aber chronischen NĂ€hrstoffzugabe könnte auch zu erhöhten mineralischen N-Verlusten aus dem Bodensystem des Kronendachs fĂŒhren. THG-relevante Prozesse in Böden des Kronendachs werden wahrscheinlich auch auf N- und P-Deposition reagieren, aber mit Ausnahme von CO2-Emissionen ist es unwahrscheinlich, dass GasflĂŒsse von Böden des Kronendachs wesentlich zum gesamten THG-Budget des Waldes beitragen

    Greenhouse gas exchange and nitrogen cycling in Saskatchewan boreal forest soils

    Get PDF
    Despite the spatial significance of Canada’s boreal forest, there is very little known about greenhouse gas emissions within it. The primary objective of this project was to study the atmosphere-soil exchange of CH4 and N2O in the boreal forest of central Saskatchewan. In the summers of 2006 and 2007, greenhouse gas emissions were measured along transects in three different mature forest stands (trembling aspen, black spruce and jack pine) using a sealed chamber method. In addition, the gross rates of mineralization and nitrification, and the relative contribution of nitrification and denitrification to N2O emissions, were measured at the trembling aspen site using a stable isotope technique in which 15N-enriched nitrate and ammonium were injected into intact soil cores. The amount of 14N found in the labeled pools was used to measure the gross rates, and the amount of 15N found in the emitted N2O was used to determine the relative contribution of the different N pathways to total N2O emissions. Results indicated that the jack pine and black spruce sites were slight sinks of CH4 (-1.23 kg CH4-C ha-1 yr-1and -0.17 kg CH4-C ha-1 yr-1 respectively in 2006 and -0.95 kg CH4-C ha-1 yr-1and 0.45 kg CH4-C ha-1 yr-1 respectively in 2007), whereas the trembling aspen site was a net source (46.7 kg CH4-C ha-1 yr-1 in 2006 and 196.0 kg CH4-C ha-1 yr-1 in 2007). All three sites had very low cumulative N2O emissions, ranging from -0.02 to 0.14 kg N2O-N ha-1 yr-1 in both years. Of the environmental controls examined for CH4, consumption at the jack pine site was correlated positively with organic carbon and negatively with water-filled pore space. Black spruce CH4 emissions were correlated negatively with both organic carbon and clay content, and emissions at the trembling aspen site were positively correlated with soil temperature and organic carbon, while also related to the presence of standing water (2006 and 2007 had very high precipitation, causing a high water table and ponding in depressions). The N2O emissions were not correlated with any of the environmental parameters measured at the jack pine or black spruce sites, but clay content was positively related to emissions at the trembling aspen site. The 15N results indicated that N cycling at the trembling aspen site was very rapid, allowing little N to escape the system as N2O; the majority of emissions that did occur were due to a nitrification-related process

    Soil trace gas fluxes along orthogonal precipitation and soil fertility gradients in tropical lowland forests of Panama

    Get PDF
    Tropical lowland forest soils are significant sources and sinks of trace gases. In order to model soil trace gas flux for future climate scenarios, it is necessary to be able to predict changes in soil trace gas fluxes along natural gradients of soil fertility and climatic characteristics. We quantified trace gas fluxes in lowland forest soils at five locations in Panama, which encompassed orthogonal precipitation and soil fertility gradients. Soil trace gas fluxes were measured monthly for 1 (NO) or 2 (CO2, CH4, N2O) years (2010–2012) using vented dynamic (for NO only) or static chambers with permanent bases. Across the five sites, annual fluxes ranged from 8.0 to 10.2 Mg CO2-C, −2.0 to −0.3 kg CH4-C, 0.4 to 1.3 kg N2O-N and −0.82 to −0.03 kg NO-N ha−1 yr−1. Soil CO2 emissions did not differ across sites, but they did exhibit clear seasonal differences and a parabolic pattern with soil moisture across sites. All sites were CH4 sinks; within-site fluxes were largely controlled by soil moisture, whereas fluxes across sites were positively correlated with an integrated index of soil fertility. Soil N2O fluxes were low throughout the measurement years, but the highest emissions occurred at a mid-precipitation site with high soil N availability. Net negative NO fluxes at the soil surface occurred at all sites, with the most negative fluxes at the low-precipitation site closest to Panama City; this was likely due to high ambient NO concentrations from anthropogenic sources. Our study highlights the importance of both short-term (climatic) and long-term (soil and site characteristics) factors in predicting soil trace gas fluxes

    Lysimeter-based full fertilizer 15N balances corroborate direct dinitrogen emission measurements using the 15N gas flow method

    Get PDF
    The 15^{15}N gas flux (15^{15}NGF) method allows for direct in situ quantification of dinitrogen (N2_2) emissions from soils, but a successful cross-comparison with another method is missing. The objectives of this study were to quantify N2_2 emissions of a wheat rotation using the 15^{15}NGF method, to compare these N2_2 emissions with those obtained from a lysimeter-based 15^{15}N fertilizer mass balance approach, and to contextualize N2_2 emissions with 15^{15}N enrichment of N2_2 in soil air. For four sampling periods, fertilizer-derived N2_2 losses (15^{15}NGF method) were similar to unaccounted fertilizer N fates as obtained from the 15^{15}N mass balance approach. Total N2_2 emissions (15^{15}NGF method) amounted to 21 ± 3 kg N ha− 1, with 13 ± 2 kg N ha− 1 (7.5% of applied fertilizer N) originating from fertilizer. In comparison, the 15^{15}N mass balance approach overall indicated fertilizer-derived N2_2 emissions of 11%, equivalent to 18 ± 13 kg N ha− 1. Nitrous oxide (N2_2O) emissions were small (0.15 ± 0.01 kg N ha− 1 or 0.1% of fertilizer N), resulting in a large mean N2_2:(N2_2O + N2_2) ratio of 0.94 ± 0.06. Due to the applied drip fertigation, ammonia emissions accounted for < 1% of fertilizer-N, while N leaching was negligible. The temporal variability of N2_2 emissions was well explained by the ÎŽ15^{15}N2_2 in soil air down to 50 cm depth. We conclude the 15^{15}NGF method provides realistic estimates of field N2_2 emissions and should be more widely used to better understand soil N2_2 losses. Moreover, combining soil air ÎŽ15^{15}N2_2 measurements with diffusion modeling might be an alternative approach for constraining soil N2_2 emissions

    Crop Updates - 2003 Weeds

    Get PDF
    This session covers Thirty four papers from different authors INTRODUCTION INTEGRATED WEED MANAGEMENT IWM system studies/demonstration sites Six years of IWM investigation – what does it tell us? Bill Roy, Agricultural Consulting and Research Services Pty Ltd Long term herbicide resistance site, the final chapter, Peter Newman and Glen Adam, Department of Agriculture Management of skeleton weed (chondrilla juncea) in a cropping rotation in Western Australia, J. R. Peirce and B. J. Rayner, Department of Agriculture WEED BIOLOGY AND COMPETITION Annual ryegrass seedbanks: The good, the bad and the ugly, Kathryn J. Steadman1, Amanda J. Ellery2 and Sally C. Peltzer3 , 1WA Herbicide Resistance Initiative, UWA, 2CSIRO Plant Industry, 3 Department of Agriculture Annual ryegrass seeds after-ripen faster during a hot summer, Kathryn J. Steadman1, Gavin P. Bignell1 and Amanda J. Ellery2, 1WA Herbicide Resistance Initiative, UWA, 2CSIRO Plant Industry Predicting annual ryegrass dormancy from climatic variables, Amanda Ellery, Andrew Moore, Sandy Nedelkos, Ross Chapman, CSIRO Plant Industry Removing dormancy in annual ryegrass seeds for early herbicide resistance testing, Kathryn J. Steadman and Mechelle J. Owen, WA Herbicide Resistance Initiative, UWA Annual ryegrass germination responds to nitrogen, Amanda Ellery1, Simone Dudley1 and Robert Gallagher2, 1CSIRO Plant Industry, 2Washington State University The agro-ecology of Malva parviflora (small flowered mallow), Pippa J. Michael, Kathryn J. Steadman and Julie A. Plummer, Western Australia Herbicide Resistance Initiative, School of Plant Biology, University of Western Australia The looming threat of wild radish, Peter Newman, Department of Agriculture IWM TOOLS Double knock, how close can we go? Peter Newman and Glen Adam, Department of Agriculture Double knock herbicide effect on annual ryegrass, Catherine Borger, Abul Hashem and Nerys Wilkins, Department of Agriculture Tactical techniques for managing Annual Ryegrass, Sally Peltzer1, Alex Douglas1, Fran Hoyle1, Paul Matson1 and Michael Walsh2 Department of Agriculture and 2Western Australian Herbicide Resistance Initiative. Weed control through soil inversion, Sally Peltzer, Alex Douglas and Paul Matson, Department of Agriculture The burning issues of annual ryegrass seed control, Darren Chitty and Michael Walsh, Western Australian Herbicide Resistance Initiative, UWA No sign of chaff-cart resistant ryegrass! David Ferris, WA Herbicide Resistance Initiative UWA PACKAGES AND MODELLING Conserving glyphosate susceptibility – modelling past, present and future us. Paul Neve1, Art Diggle2, Patrick Smith3 and Stephen Powles1 ,1Western Australian Herbicide Resistance Initiative, School of Plant Biology, University of Western Australia, 2Department of Agriculture, 3CSIRO Sustainable Ecosystems WEEDEM: A program for predicting weed emergence in Western Australia, Michael Walsh,1 David Archer2, James Eklund2 and Frank Forcella2, 1Western Australia Herbicide Resistance Initiative, UWA, 2USDA-Agricultural Research Service, 803 Iowa Avenue, Morris, MN 56267, USA Weed and herbicide management for long term profit: A workshop, Alister Draper1 and Rick Llewellyn12, 1WA Herbicide Resistance Initiative, 2School of Agricultural and Resource Economics, University of Western Australia HERBICIDE RESISTANCE Alternative herbicides for control of triazine and diflufenican multiple resistant wild radish, Aik Cheam1, Siew Lee1, David Nicholson1 and Mike Clarke2 1Department of Agriculture, Western Australia, 2Bayer CropScience Resistance of wild mustard biotype to ALS-inhibiting herbicides in WA Wheatbelt, Abul Hashem, Department of Agriculture Glyphosate-resistant ryegrass biotypes in the WA wheatbelt, Abul Hashem, Catherine Borger and Nerys Wilkins, Department of Agriculture Implications of herbicide rates for resistance management, Paul Neve, Western Australian Herbicide Resistance Initiative, University of Western Australia Putting a price on herbicide resistance, Rick Llewellyn, School of Agricultural and Resource Economics/WA Herbicide Resistance Initiative, University of Western Australia Herbicide resistance from over the fence: Mobility and management, Debbie Allena, Rick Llewellynb, aUniversity of Western Australia, 4th year student, 2002. Mingenew-Irwin Group, bSchool of Agricultural and Resource Economics/Western Australia Herbicide Resistance Initiative, University of Western Australia HERBICIDE TOLERANCE Herbicide tolerance of new barley varieties, Harmohinder S. Dhammu and Terry Piper, Department of Agriculture Herbicide tolerance of new lupins, Harmohinder S. Dhammu, Terry Piper and David Nicholson, Department of Agriculture Herbicide tolerance of new field pea varieties, Harmohinder S. Dhammu, Terry Piper and David Nicholson, Department of Agriculture Herbicide tolerance of new lentil varieties, H.S. Dhammu, T.J. Piper and L.E. Young, Department of Agriculture HERBICIDES – NEW PRODUCTS/PRODUCT USES; USE Kill half leaf ryegrass with Spray.Seed¼ at night, Peter Newman and Glenn Adam, Department of Agriculture CLEARFIELDℱ wheat to control hard-to-kill weeds, Abul Hashem, Catherine Borger and Nerys Wilkins, Department of Agriculture Diuron, a possible alternative to simazine pre-emergent in lupins, Peter Newman and Glenn Adam, Department of Agriculture Dual Gold¼ soft on barley, soft on weeds in dry conditions, Peter Newman and Glenn Adam, Department of Agriculture Dual Gold¼ soft on lupins, soft on ryegrass in dry conditions, Peter Newman and Glenn Adam, Department of Agricultur

    Crop Updates 2001 - Weeds

    Get PDF
    This session covers forty six papers from different authors: 1. INTRODUCTION, Vanessa Stewart, Agriculture Western Australia PLENARY 2. Wild radish – the implications for our rotations, David Bowran, Centre for Cropping Systems INTEGRATED WEED MANAGEMENT IWM system studies/demonstration sites 3. Integrated weed management: Cadoux, Alexandra Wallace, Agriculture Western Australia 4. A system approach to managing resistant ryegrass, Bill Roy, Agricultural Consulting and Research Services Pty Ltd, York 5. Long term herbicide resistance demonstration, Peter Newman, Agriculture Western Australia, Cameron Weeks, Tony Blake and Dave Nicholson 6. Integrated weed management: Katanning, Alexandra Wallace, Agriculture Western Australia 7. Integrated weed management: Merredin, Vanessa Stewart, Agriculture Western Australia 8. Short term pasture phases for weed control, Clinton Revell and Candy Hudson, Agriculture Western Australia Weed biology – implications for IWM 9. Competitivness of wild radish in a wheat-lupin rotation , Abul Hashem, Nerys Wilkins, and Terry Piper, Agriculture Western Australia 10. Population explosion and persistence of wild radish in a wheat-lupin rotation, Abul Hashem, Nerys Wilkins, Aik Cheam and Terry Piper , Agriculture Western Australia 11. Variation is seed dormancy and management of annual ryegrass, Amanda Ellery and Ross Chapman, CSIRO 12. Can we eradicate barley grass, Sally Peltzer, Agriculture Western Australia Adoption and modelling 13. Where to with RIM? Vanessa Stewart1 and Robert Barrett-Lennard2, 1Agriculture Western Australia, 2Western Australian Herbicide Resistance Initiative (WAHRI) 14. Multi-species RIM model, Marta Monjardino1,2, David Pannell2 and Stephen Powles1 1Western Australian Herbicide Resistance Initiative (WAHRI), 2ARE, University of Western Australia 15. What causes WA grain growers to adopt IWM practices? Rick Llewellyn, WAHRI/ARE, Faculty of Agriculture, University of WA New options for IWM? 16. Fuzzy tramlines for more yield and less weeds, Paul Blackwell Agriculture Western Australia, and Maurice Black, Harbour Lights Estate, Geraldton 17. Inter-row knockdowns for profitable lupins, Paul Blackwell, Agriculture Western Australia and Miles Obst, Farmer Mingenew 18. Row cropping and weed control in lupins, Mike Collins and Julie Roche, Agriculture Western Australia 19. Cross seedimg suppresses annual ryegrass and increases wheat yield, Abul Hashem, Dave Nicholson and Nerys Wilkins Agriculture Western Australia 20. Weed control by chaff burial, Mike Collins, Agriculture Western Australia HERBICIDE RESISTANCE 21. Resistance in wild oats to Fop and Dim herbicides in Western Australia, Abul Hashem and Harmohinder Dhammu, Agriculture Western Australia 22. Triazine and diflufenican resistance in wild radish: what it means to the lupin industry, Aik Cheam, Siew Lee, David Nicholson and Peter Newman, Agriculture Western Australia 23. Comparison if in situ v seed testing for determining herbicide resistance, Bill Roy, Agricultural Consulting and Research Services Pty Ltd, York HERBICIDE TOLERANCE 24. Phenoxy herbicide tolerance of wheat, Peter Newman and Dave Nicholson, Agriculture Western Australia 25. Tolerance of wheat to phenoxy herbicides, Harmohinder S. Dhammu, Terry Piper and Mario F. D\u27Antuono, Agriculture Western Australia 26. Herbicide tolerance of new wheats, Harmohinder S. Dhammu, Terry Piper and David F. Nicholson, Agriculture Western Australia 27. Herbicide tolerance of durum wheats, Harmohinder S. Dhammu, Terry Piper and David F. Nicholson, Agriculture Western Australia 28. Herbicide tolerance of new field pea varieties, Harmohinder S. Dhammu, Terry Piper, David F. Nicholson, and Mario F. D\u27Antuono, Agriculture Western Australia 29. Herbicide tolerance of Cooke field peas on marginal soil, Harmohinder S. Dhammu, Terry Piper, David F. Nicholson, and Mario F. D\u27Antuono, Agriculture Western Australia 30. Herbicide tolerance of some annual pasture legumes adapted to coarse textured sandy soils, Clinton Revell and Ian Rose, Agriculture Western Australia 31 Herbicide tolerance of some annual pasture legumes adapted to fine textured clay soils, Clinton Revell and Ian Rose, Agriculture Western Australia WEED CONTROL IN LUCERNE 32. Management of weeds for Lucerne establishment, Diana Fedorenko, Clayton Butterly, Stuart McAlpine, Terry Piper and David Bowran, Centre for Cropping Systems, Agriculture Western Australia 33. Management of weeds in the second year of Lucerne, Diana Fedorenko, Clayton Butterly, Stuart McAlpine, Terry Piper and David Bowran, Centre for Cropping Systems, Agriculture Western Australia 34. Residual effects of weed management in the third year of Lucerne, Diana Fedorenko, Clayton Butterly, Stuart McAlpine, Terry Piper and David Bowran, Centre for Cropping Systems, Agriculture Western Australia 35. Herbicide tolerance and weed control in Lucerne, Peter Newman, Dave Nicholson and Keith Devenish Agriculture Western Australia HERBICIDES – NEW PRODUCTS/PRODUCE USES; USE New products or product use 36. New herbicide options for canola, John Moore and Paul Matson, Agriculture Western Australia 37. Chemical broadleaf weed management in Peaola, Shannon Barraclough and Lionel Martin, Muresk Institute of Agriculture, Curtin University of Technology 38. Balance¼ - a new broad leaf herbicide for the chickpea industry, Mike Clarke, Jonas Hodgson and Lawrence Price, Aventis CropScience 39. Marshmallow – robust herbicide strategies, Craig Brown, IAMA Agribusiness 40. Affinity DF – a prospective option for selective in-crop marshmallow control, Gordon Cumming, Technical Officer, Crop Care Australasia 41. A new formulation of Carfentrazone-ethyl for pre-seeding knockdown control of broadleaved weeds including Marshmallow, Gordon Cumming, Technical Officer, Crop Care Australasia Herbicide use 42. Autumn applied trifluralin can be effective! Bill Crabtree, Scientific Officer, Western Australian No-Tillage Farmers Association 43. Which knockdown herbicide for small ryegrass? Peter Newman and Dave Nicholson, Agriculture Western Australia 44. Poor radish control with Group D herbicides in lupins, Peter Newman and Dave Nicholson, Agriculture Western Australia WEED ISSUES 45. Distribution and incidence of aphids and barley yellow dwarf virus in over-summering grasses in the WA wheatbelt, Jenny Hawkes and Roger Jones, CLIMA and Agriculture Western Australia 46. e-weed, Vanessa Stewart, Agriculture Western Australia CONTRIBUTING AUTHOR CONTACT DETAIL

    LEARN: A multi-centre, cross-sectional evaluation of Urology teaching in UK medical schools

    Get PDF
    OBJECTIVE: To evaluate the status of UK undergraduate urology teaching against the British Association of Urological Surgeons (BAUS) Undergraduate Syllabus for Urology. Secondary objectives included evaluating the type and quantity of teaching provided, the reported performance rate of General Medical Council (GMC)-mandated urological procedures, and the proportion of undergraduates considering urology as a career. MATERIALS AND METHODS: LEARN was a national multicentre cross-sectional study. Year 2 to Year 5 medical students and FY1 doctors were invited to complete a survey between 3rd October and 20th December 2020, retrospectively assessing the urology teaching received to date. Results are reported according to the Checklist for Reporting Results of Internet E-Surveys (CHERRIES). RESULTS: 7,063/8,346 (84.6%) responses from all 39 UK medical schools were included; 1,127/7,063 (16.0%) were from Foundation Year (FY) 1 doctors, who reported that the most frequently taught topics in undergraduate training were on urinary tract infection (96.5%), acute kidney injury (95.9%) and haematuria (94.4%). The most infrequently taught topics were male urinary incontinence (59.4%), male infertility (52.4%) and erectile dysfunction (43.8%). Male and female catheterisation on patients as undergraduates was performed by 92.1% and 73.0% of FY1 doctors respectively, and 16.9% had considered a career in urology. Theory based teaching was mainly prevalent in the early years of medical school, with clinical skills teaching, and clinical placements in the later years of medical school. 20.1% of FY1 doctors reported no undergraduate clinical attachment in urology. CONCLUSION: LEARN is the largest ever evaluation of undergraduate urology teaching. In the UK, teaching seemed satisfactory as evaluated by the BAUS undergraduate syllabus. However, many students report having no clinical attachments in Urology and some newly qualified doctors report never having inserted a catheter, which is a GMC mandated requirement. We recommend a greater emphasis on undergraduate clinical exposure to urology and stricter adherence to GMC mandated procedures
    corecore