261 research outputs found

    A new performance test to evaluate the sulfate resistance of concrete by tensile strength measurements

    Get PDF
    Concrete structures without sufficient durability can be damaged by sulfates in groundwater and from surrounding rock layers. To evaluate the performance of a concrete mixture, precise and performance-oriented test methods are a must. Therefore, a new a performance oriented concrete test procedure based on tensile strength measurements was developed considering experiences reported in international literature and recommendations of state-of-the-art reports. A vast parameter study with approx. 3850 tensile tests on ASTM briquets, 1900 flexural tensile tests on standard prisms and 2100 expansion tests on mortar flat prisms of different ages and with different storage conditions was statistically assessed. Based on the results a performance-oriented test method could be defined which considers not only the chemical, but also the physical resistance of a concrete against sulfate attack. The method was verified by 23 concretes with different cements or cement fly ash combinations and additional field tests. It could clearly be demonstrated that the results represent the performance of a practical concrete in case of sulfate attack. Furthermore, it leads much faster to an evaluation of the sulfate resistance compared to the most other practical oriented methods

    Nucleation seeding with calcium silicate hydrate – A review

    Get PDF
    The development of green cements, with the aim of reducing CO2 emissions, often results in reduced hydration activity, especially during the first hours and days. Nucleation seeding with C-S-H has enormous potential to accelerate hydration, which can compensate for the above-mentioned effect without compromising the long-term strength of seeded cements. In this work, the effects of calcium silicate hydrate are reviewed in detail, with a focus on synthesis, as well as their influence on the hydration mechanism and the development of mechanical properties, such as early and long-term compressive strength and porosity

    Corrosion of aluminium metal in OPC- and CAC-based cement matrices

    No full text
    Corrosion of aluminium metal in ordinary Portland cement (OPC) based pastes produces hydrogen gas and expansive reaction products causing problems for the encapsulation of aluminium containing nuclear wastes. Although corrosion of aluminium in cements has been long known, the extent of aluminium corrosion in the cement matrices and effects of such reaction on the cement phases are not well established. The present study investigates the corrosion reaction of aluminium in OPC, OPC-blast furnace slag (BFS) and calcium aluminate cement (CAC) based systems. The total amount of aluminium able to corrode in an OPC and 4:1 BFS:OPC system was determined, and the correlation between the amount of calcium hydroxide in the system and the reaction of aluminium obtained. It was also shown that a CAC-based system could offer a potential matrix to incorporate aluminium metal with a further reduction of pH by introduction of phosphate, producing a calcium phosphate cement

    Low energy pre-blended mortars: Part 2 – Production and characterisation of mortars using a novel lime drying technique

    Get PDF
    The presence of free water in mortars destined for silo or bagged storage can lead to the degradation of the binder phase. Such water may be present as a result of using wet, as-delivered sand or as a consequence of prior processes such as de-activation of Roman cement. Thus, water must be removed from the system prior to storage. Part 1 of this paper describes the control of a technique by which quicklime is added to the wet system which principally dries it by both slaking the quicklime and evaporation as a consequence of the exothermic slaking reaction. Two examples of mortars are presented in which excess water is removed from the system by the inclusion of quicklime. In the first, the water is present in the as-delivered sand and the binder is a combination of the slaked lime and ggbs. In the second, the water remains after pre-hydration of a Roman cement which is a process to retard its rapid setting characteristics. It is shown that optimally dried mortars are not subject to degradation following storage of both mortar types

    Estimation of standard molar entropy of cement hydrates and clinker minerals

    Get PDF
    It is not straightforward to experimentally measure the standard molar entropy of cement hydrates or clinker minerals. This is further compounded by the controversies surrounding the entropy values reported in established thermodynamic datasets for cements. The purpose of this study is to assess the reliability of standard entropies compiled in those datasets. To this end, a simple but robust method is used in which the standard entropy of an inorganic solid is correlated to its formula unit volume via a linear equation. The results of this analysis show that the standard entropies and/or molar volumes (and in cases solubility products) of the following phases deserve closer scrutiny: meta-ettringite phases; magnesium/aluminium layered double hydroxide solid solutions; almost all iron-bearing monosulfate and hydrogarnet phases; and several calcium silicate hydrate solid solution end-members. In addition, this study reports the provisional estimates for the standard entropies of minerals ternesite and ye'elimite

    Influence of limestone on the hydration of ternary slag cement

    Get PDF
    The hydration kinetics, microstructure and pore solution composition of ternary slag-limestone cements have been investigated. Commercial CEM I 52.5 R was blended with slag and limestone; maintaining a clinker to SCM ratio of 50:50 with up to 20% slag replaced by limestone. The sulphate content was maintained at 3% in all composite systems. Hydration was followed by a combination of isothermal calorimetry, chemical shrinkage, scanning electron microscopy, and thermogravimetric analysis. The hydration of slag was followed by the implementation of QXRD/PONKCS method. The accuracy of the calibrated PONKCS phase was assessed on slag and corundum mixes of varying ratios, at different w/s ratios. Thus, the method was used to analyse hydrated cements without dehydrating the specimens. The results show that the presence of limestone enhanced both clinker and slag hydration. The pore volume and pore solution chemistry were further examined to clarify to the synergistic effects. The nucleation effects account for enhanced clinker hydration while the space available for hydrate growth plus lowering of the aluminium concentration in the pore solution led to the improved slag hydration

    Phase evolution of C-(N)-A-S-H/N-A-S-H gel blends investigated via alkali-activation of synthetic calcium aluminosilicate precursors

    Get PDF
    Stoichiometrically-controlled alkali-activated pastes containing calcium-(sodium) aluminosilicate hydrate (C-(N)-A-S-H) and sodium aluminosilicate hydrate (N-A-S-H) gels are produced by alkali-activation of high-purity synthetic calcium aluminosilicate powders. These powders are chemically comparable to the glass in granulated blast furnace slag, but without interference from minor constituents. The physiochemical characteristics of these gels depend on precursor chemical composition. Increased Ca content of the precursor promotes formation of low-Al, high-Ca C-(N)-A-S-H with lower mean chain length as determined by quantification of solid state nuclear magnetic resonance spectra, and less formation of calcium carboaluminate ‘Alumino-ferrite mono’ (AFm) phases. Increased Al content promotes Al inclusion and reduced crosslinking within C-(N)-A-S-H, increased formation of calcium carboaluminate AFm phases, and formation of an additional N-A-S-H gel. Small changes in precursor composition can induce significant changes in phase evolution, nanostructure and physical properties, providing a novel route to understand microstructural development in alkali-activated binders and address key related durability issues
    • 

    corecore