253 research outputs found

    Marine polymer-gels’ relevance in the atmosphere as aerosols and ccn

    Get PDF
    Marine polymer gels play a critical role in regulating ocean basin scale biogeochemical dynamics. This brief review introduces the crucial role of marine gels as a source of aerosol particles and cloud condensation nuclei (CCN) in cloud formation processes, emphasizing Arctic marine microgels. We review the gel’s composition and relation to aerosols, their emergent properties, and physico-chemical processes that explain their change in size spectra, specifically in relation to aerosols and CCN. Understanding organic aerosols and CCN in this context provides clear benefits to quantifying the role of marine nanogel/microgel in microphysical processes leading to cloud formation. This review emphasizes the DOC-marine gel/aerosolized gel-cloud link, critical to developing accurate climate models

    Net primary productivity estimates and environmental variables in the Arctic Ocean; an assessment of coupled physical-biogeochemical models

    Get PDF
    The relative skill of 21 regional and global biogeochemical models was assessed in terms of how well the models reproduced observed net primary productivity (NPP) and environmental variables such as nitrate concentration (NO (sub 3) ), mixed layer depth (MLD), euphotic layer depth (Z (sub eu) ), and sea ice concentration, by comparing results against a newly updated, quality-controlled in situ NPP database for the Arctic Ocean (1959-2011). The models broadly captured the spatial features of integrated NPP (iNPP) on a pan-Arctic scale. Most models underestimated iNPP by varying degrees in spite of overestimating surface NO (sub 3) , MLD, and Z (sub eu) throughout the regions. Among the models, iNPP exhibited little difference over sea ice condition (ice-free versus ice-influenced) and bottom depth (shelf versus deep ocean). The models performed relatively well for the most recent decade and toward the end of Arctic summer. In the Barents and Greenland Seas, regional model skill of surface NO (sub 3) was best associated with how well MLD was reproduced. Regionally, iNPP was relatively well simulated in the Beaufort Sea and the central Arctic Basin, where in situ NPP is low and nutrients are mostly depleted. Models performed less well at simulating iNPP in the Greenland and Chukchi Seas, despite the higher model skill in MLD and sea ice concentration, respectively. iNPP model skill was constrained by different factors in different Arctic Ocean regions. Our study suggests that better parameterization of biological and ecological microbial rates (phytoplankton growth and zooplankton grazing) are needed for improved Arctic Ocean biogeochemical modelin

    Possible limitations of dolphin echolocation: a simulation study based on a cross-modal matching experiment

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Wei, C., Hoffmann-Kuhnt, M., Au, W. W. L., Ho, A. Z. H., Matrai, E., Feng, W., Ketten, D. R., & Zhang, Y. Possible limitations of dolphin echolocation: a simulation study based on a cross-modal matching experiment. Scientific Reports, 11(1), (2021): 6689, https://doi.org/10.1038/s41598-021-85063-2.Dolphins use their biosonar to discriminate objects with different features through the returning echoes. Cross-modal matching experiments were conducted with a resident bottlenose dolphin (Tursiops aduncus). Four types of objects composed of different materials (water-filled PVC pipes, air-filled PVC pipes, foam ball arrays, and PVC pipes wrapped in closed-cell foam) were used in the experiments, respectively. The size and position of the objects remained the same in each case. The data collected in the experiment showed that the dolphin’s matching accuracy was significantly different across the cases. To gain insight into the underlying mechanism in the experiments, we used finite element methods to construct two-dimensional target detection models of an echolocating dolphin in the vertical plane, based on computed tomography scan data. The acoustic processes of the click’s interaction with the objects and the surrounding media in the four cases were simulated and compared. The simulation results provide some possible explanations for why the dolphin performed differently when discriminating the objects that only differed in material composition in the previous matching experiments.One of the authors, Wei. C is supported by a Forrest Research Foundation Fellowship. Support for D. Ketten for this effort was provided by the Joint Industry Programme and by the Helmholtz Foundation. This work was also supported by the Hawaii Institute of Marine Biology (HIMB) contribution No. 1630 and School of Ocean and Earth Science and Technology (SOEST) contribution No. 9452

    Modeling dimethylsulphide production in the upper ocean

    Get PDF
    Dimethylsulphide (DMS) is produced by upper ocean ecosystems and emitted to the atmosphere, where it may have an important role in climate regulation. Several attempts to quantify the role of DMS in climate change have been undertaken in modeling studies. We examine a model of biogenic DMS production and describe its endogenous dynamics and sensitivities. We extend the model to develop a one-dimensional version that more accurately resolves the important processes of the mixed layer in determining the ecosystem dynamics. Comparisons of the results of the one-dimensional model with an empirical relationship that describes the global distribution of DMS, and also with vertical profiles of DMS in the upper ocean measured at the Bermuda Atlantic Time Series, suggest that the model represents the interaction between the biological and physical processes well on local and global scales. Our analysis of the model confirms its veracity and provides insights into the important processes determining DMS concentration in the oceans

    Toward Improved Observing of the Rapidly Changing Arctic Ocean

    Get PDF
    Arctic Observing Summit (April 30 – May 2, 2013, Vancouver, Canada); AON statementIn order to observe and understand the Arctic Ocean and its response to climate change, the traditional approach of acquiring observations when and where the Arctic is accessible has to be enhanced with multi-faceted measurement systems operating autonomously to provide year-round information in real time. The major goal of such a network of autonomous sensors is to measure and monitor physical, chemical and biological parameters in the atmosphere, sea ice and ocean on at least daily intervals

    Dimethyl sulfide production: what is the contribution of the coccolithophores?

    Get PDF

    Parameterizing the impact of seawater temperature and irradiance on dimethylsulfide (DMS) in the Great Barrier Reef and the contribution of coral reefs to the global sulfur cycle

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Jackson, R. L., Gabric, A. J., Matrai, P. A., Woodhouse, M. T., Cropp, R., Jones, G. B., Deschaseaux, E. S. M., Omori, Y., McParland, E. L., Swan, H. B., & Tanimoto, H. Parameterizing the impact of seawater temperature and irradiance on dimethylsulfide (DMS) in the Great Barrier Reef and the contribution of coral reefs to the global sulfur cycle. Journal of Geophysical Research:Oceans, 126(3), (2021): e2020JC016783, https://doi.org/10.1029/2020JC016783.Biogenic emissions of dimethylsulfide (DMS) are an important source of sulfur to the atmosphere, with implications for aerosol formation and cloud albedo over the ocean. Natural aerosol sources constitute the largest uncertainty in estimates of aerosol radiative forcing and climate and thus, an improved understanding of DMS sources is needed. Coral reefs are strong point sources of DMS; however, this coral source of biogenic sulfur is not explicitly included in climatologies or in model simulations. Consequently, the role of coral reefs in local and regional climate remains uncertain. We aim to improve the representation of tropical coral reefs in DMS databases by calculating a climatology of seawater DMS concentration (DMSw) and sea-air flux in the Great Barrier Reef (GBR), Australia. DMSw is calculated from remotely sensed observations of sea surface temperature and photosynthetically active radiation using a multiple linear regression model derived from field observations of DMSw in the GBR. We estimate that coral reefs and lagoon waters in the GBR (∼347,000 km2) release 0.03–0.05 Tg yr−1 of DMS (0.02 Tg yr−1 of sulfur). Based on this estimate, global tropical coral reefs (∼600,000 km2) could emit 0.08 Tg yr−1 of DMS (0.04 Tg yr−1 of sulfur), with the potential to influence the local radiative balance.Australian Research Council. Grant Number: DP150101649 National Science Foundation (NSF). Grant Number: 1543450 Ministry of Education, Culture, Sports, Science and Technology Grants-in-Aid for Scientific Research. Grant Number: 23310016,16H02967,24241010,15H01732 Ministry of Education, Culture, Sports, Science and Technology Grant-in-Aid for Young Scientists. Grant Number: 17K1281

    Temporal and spatial characteristics of ozone depletion events from measurements in the Arctic

    Get PDF
    Following polar sunrise in the Arctic springtime, tropospheric ozone episodically decreases rapidly to near-zero levels during ozone depletion events (ODEs). Many uncertainties remain in our understanding of ODE characteristics, including the temporal and spatial scales, as well as environmental drivers. Measurements of ozone, bromine monoxide (BrO), and meteorology were obtained during several deployments of autonomous, ice-tethered buoys (O-Buoys) from both coastal sites and over the Arctic Ocean; these data were used to characterize observed ODEs. Detected decreases in surface ozone levels during the onset of ODEs corresponded to a median estimated apparent ozone depletion timescale (based on both chemistry and the advection of O<sub>3</sub>-depleted air) of 11 h. If assumed to be dominated by chemical mechanisms, these timescales would correspond to larger-than-observed BrO mole fractions based on known chemistry and assumed other radical levels. Using backward air mass trajectories and an assumption that transport mechanisms dominate observations, the spatial scales for ODEs (defined by time periods in which ozone levels ≤15 nmol mol<sup>−1</sup>) were estimated to be 877 km (median), while areas estimated to represent major ozone depletions (<10 nmol mol<sup>−1</sup>) had dimensions of 282 km (median). These observations point to a heterogeneous boundary layer with localized regions of active, ozone-destroying halogen chemistry, interspersed among larger regions of previously depleted air that retain reduced ozone levels through hindered atmospheric mixing. Based on the estimated size distribution, Monte Carlo simulations showed it was statistically possible that all ODEs observed could have originated upwind, followed by transport to the measurement site. Local wind speed averages were low during most ODEs (median of ~3.6 m s<sup>−1</sup>), and there was no apparent dependence on local temperature

    Processes That Contribute to Decreased Dimethyl Sulfide Production in Response to Ocean Acidification in Subtropical Waters

    Get PDF
    Long-term time series data show that ocean acidification is occurring in the subtropical oceans. As a component of an in situ mesocosm experiment carried out offGran Canaria in the subtropical North Atlantic, we examined the influence of ocean acidification on the net production of dimethylsulfide (DMS). Over 23 days under oligotrophic conditions, time-integrated DMS concentrations showed an inverse relationship of -0.21 ± 0.02 nmol DMS nmol-1 H+ across the gradient of H+ concentration of 8.8-23.3 nmol l-1, equivalent to a range of pCO2 of 400-1,252 atm. Proportionally similar decreases in the concentrations of both dissolved and particulate dimethylsulfoniopropionate (DMSP) were observed in relation to increasing H+ concentration between the mesocosms. The reduced net production of DMSP with increased acidity appeared to result from a decrease in abundance of a DMSP-rich nanophytoplankton population. A 35S-DMSP tracer approach was used to determine rates of dissolved DMSP catabolism, including DMS production, across the mesocosm treatments. Over a phase of increasing DMS concentrations during the experiment, the specific rates of DMS production were significantly reduced at elevated H+ concentration. These rates were closely correlated to the rates of net DMS production indicating that transformation of dissolved DMSP to DMS by bacteria was a major component of DMS production. It was not possible to resolve whether catabolism of DMSP was directly influenced by H+ concentrations or was an indirect response in the bacterial community composition associated with reduced DMSP availability. There is a pressing need to understand how subtropical planktonic communities respond to the predicted gradual prolonged ocean acidification, as alterations in the emission of DMS from the vast subtropical oceans could influence atmospheric chemistry and potentially climate, over a large proportion of the Earth's surface
    corecore