
1.  Introduction
Aerosols and clouds play a key role in the Earth's radiative budget and climate. The influence of anthropo-
genic greenhouse gas (GHG) emissions on the radiative balance is relatively well understood and is estimat-
ed to have exerted an average global warming effect of 2.3 W m−2 over the industrial period (IPCC, 2014). 
Anthropogenic and natural aerosols offset this warming effect by −0.9 W m−2 (−1.9 to −0.1 W m−2) through 
scattering of short-wave radiation and increasing the albedo, lifetime, and cover of clouds (Andreae, 1995; 
IPCC, 2014; Twomey, 1974). However, the radiative effects of natural aerosols and their role in climate is 
complex and less well understood. Approximately 45% of the variance in aerosol radiative forcing is derived 
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from uncertainties in the role of natural aerosol sources, including marine dimethylsulfide (DMS) (Carslaw 
et al., 2013).

DMS is a volatile sulfur compound produced in the ocean by marine planktonic and benthic algae (Ste-
fels, 2000), giant clams (Guibert et al., 2020; Hill et al., 2000), coral endosymbiotic dinoflagellates, and cor-
als (Broadbent et al., 2002; Jones et al., 1994; Raina et al., 2013). The marine precursor of DMS, dimethylsul-
foniopropionate (DMSP) has a range of hypothesized biological and ecological functions (McParland & 
Levine, 2019; Stefels, 2000), including a physiological stress response (Sunda et al., 2002). DMSP catabolism 
is mediated by algal and microbial processes. DMSP cleavage to DMS occurs via DMSP-lyase enzymes pres-
ent in free-living and coral-associated endosymbiotic algae and microbes (Bullock et al., 2017). The DMSP 
demethylation pathway is a microbial process by which marine microbes convert DMSP into methanethiol 
(Bourne et al., 2016; Bullock et al., 2017; Raina et al., 2009). A portion (∼10%) of the dissolved DMS (DMSw) 
pool is ventilated to the marine boundary layer where it is rapidly oxidized to various sulfate aerosol precur-
sor compounds (Andreae & Crutzen, 1997; Berndt et al., 2019; Veres et al., 2020).

Field observations and model simulations have identified a significant influence of DMS-derived sulfates on 
aerosol formation and growth, cloud condensation nuclei (CCN), and cloud droplet radius over the ocean 
(Gabric et al., 2013, 2018; Korhonen et al., 2008; Lana et al., 2012; Sanchez et al., 2018). DMS accounts 
for 18–43% of the global annual mean nonsea salt sulfate (nss-SO4) aerosol burden (Gondwe et al., 2003; 
Kloster et al., 2006), exerting a top-of-atmosphere radiative forcing of −1.79 W m−2 (Mahajan et al., 2015) to 
−2.03 W m−2 (Thomas et al., 2010). However, regional variability in the importance of DMS in aerosol and 
cloud properties is evident, with the greatest sensitivity occurring over remote oceans where the influence 
of anthropogenic aerosol emissions is minimal (Fiddes et al., 2018; Woodhouse et al., 2013).

The Great Barrier Reef (GBR), Australia, has been recognized as a significant source of DMS, with the 
potential to influence local climate in NE Australia (Jackson et al., 2020; Jones et al., 2018). Acropora spp. 
are dominant throughout the Indo-Pacific and produce amongst the highest reported individual concen-
trations of dimethylated sulfur compounds (Broadbent et al., 2002; Jones et al., 1994; Swan et al., 2017a). 
Early field surveys found that aerosol concentration was significantly higher in the marine atmosphere 
directly over the GBR, compared to the seaward side (Bigg & Turvey, 1978). More recent field surveys have 
observed nucleation events occurring over the GBR (Leck & Bigg, 2008), where newly nucleated aerosol 
particles consisted of ∼40% organic matter and ∼60% sulfates, which are likely derived from DMS (Modini 
et al., 2009). Furthermore, there is a strong seasonal increase in fine-mode aerosol loading in spring and 
summer throughout the GBR, that has been observed from both field (Leck & Bigg,  2008) and satellite 
observations (Cropp et al., 2018; Jackson et al., 2018). This increase in fine-mode aerosol implies a temper-
ature or irradiance-dependent biogenic influence (Christiansen et al., 2019; Korhonen et al., 2008; Long 
et al., 2014).

In corals, DMSP biosynthesis and cleavage to DMS is upregulated in response to oxidative stress caused 
by exposure to high sea surface temperature (SST), irradiance (Deschaseaux et  al.,  2014b; Fischer & 
Jones, 2012; Jones et al., 2007; Swan et al., 2017b), and low salinity (Gardner et al., 2016). Oxidative stress 
is caused by the release of reactive oxygen compounds (ROS) by coral cell mitochondria and zooxanthel-
lae photosystems which can damage cells, tissues, and DNA (Lesser, 2011; Weis, 2008). Irradiance stress 
can be exacerbated in corals during aerial exposure at low tide (Buckee et al., 2020), with DMS being re-
leased directly to the atmosphere and resulting in measured spikes in atmospheric DMS (DMSa) of up to 
45.9 nmol m−3 (1,122 ppt) which can persist for around 8 h (Swan et al., 2017b). This is well above typical 
oceanic emissions of ∼4–8 nmol m3 (∼100–200 ppt) (Kettle et al., 1999).

The rate of photosynthesis in coral-associated zooxanthellae increases linearly with photosynthetically 
active radiation (PAR) until photosystems become saturated and a maximum rate is achieved (Anderson 
et al., 1995; Gorbunov et al., 2001; Winters et al., 2003). For PAR beyond this maximum light threshold, 
photoinhibition occurs and excess light energy is dissipated as heat via various photoprotective mechanisms 
(Gorbunov et al., 2001; Melis, 1999). Excess light energy is quantified as excess excitation energy (EEE) 
and when not all EEE is dissipated as heat, photodamage can occur to Photosystem II (PS II), inhibiting 
the transport of electrons and damaging protein structure. When the rate of photodamage exceeds that of 
photoprotective repair, photodamage accumulates, and ROS are released into coral tissues (Lesser, 2011; 
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Weis,  2008). If conditions persist, corals will expel their zooxanthel-
lae and become bleached (Downs et  al.,  2002; Lesser,  2011; Yakovleva 
et al., 2009). High SST can exacerbate photodamage by further reducing 
the PAR absorption capacity (Jones et al., 2000, 2002).

DMS(P) readily scavenge ROS, thereby raising the coral oxidative stress 
threshold (Jones & King,  2015). ROS scavenging by DMS(P) produc-
es dimethyl sulfoxide (DMSO), which can be reduced by bacteria and 
algae to DMS (Spiese et  al.,  2009). The concentration of DMS in coral 
reef waters is therefore dependent on the rate of DMS(P) (O) biosynthe-
sis, which is related to coral oxidative stress (Deschaseaux et al., 2014b; 
Gardner et al., 2016; Raina et al., 2013). However, when oxidative stress 
exceeds coral physiological tolerance thresholds, ROS scavenging, and 
DMS(P) oxidation to DMSO increases, resulting in a decline in ambient 
DMS concentration (Deschaseaux et al., 2014a; Fischer & Jones, 2012). 
For example, Fischer and Jones  (2012) found that when Acropora spp. 
were exposed to SST ∼2 °C above ambient temperatures (26 °C), and PAR 
>6  mol  m−2  h−1, concentrations of DMSa declined by ∼90%. Similarly, 
Jones et al. (2007) demonstrated a decline in DMSw of ∼50% prior to a 
mass coral bleaching event in the central GBR when SST was >30 °C. The 
decrease in DMSw was likely due to enhanced biochemical oxidation of 
DMS(P) to DMSO and/or a decline in production due to coral bleaching 
(Fischer & Jones, 2012; Jones et al., 2007). Thus, DMSw in coral reefs is 
often closely linked to coral oxidative stress.

Currently, global DMS climatologies do not explicitly account for cor-
al-derived DMS and the local DMS climatology of the GBR is unknown 
(Kettle & Andreae, 2000; Lana et al., 2011; Land et al., 2014). Although 
global DMSw climatologies do incorporate measurements made within or 
nearby to coral reef lagoons (see Kettle et al., 1999), only a small number 
of coral reef regions are included and interpolation techniques do not ac-
count for seasonally variable coral emissions or direct coral-atmosphere 
DMS flux during coral exposure to air at low tide. The sensitivity of local 
climate to coral reef DMS emissions cannot be accurately quantified in 
earth system models without an improved representation of the source 
strength of coral reef-derived DMS.

Here, we derive a proxy for sea surface DMSw in coral reef waters, from field measurements of DMSw and 
physical oceanic parameters taken during Marine National Facility RV Investigator voyage IN2016_V05 
in the GBR. Jones et al. (2018) compiled DMSw measurements from three decades of surveys in the GBR, 
including the RV Investigator data set, to estimate annual DMS sea-air flux. The same data set is used here 
to derive a proxy for DMSw, which is then used to calculate a climatology of DMSw and sea-air flux from 
the GBR. The results provide insight into the importance of coral reefs to the atmospheric sulfur budget; an 
important source which may be lost with ongoing coral bleaching and reef degradation.

2.  Materials and Methods
2.1.  In-Situ and Remotely Sensed Measurements

DMSw and total DMSP (DMSPt) concentrations were measured in the southern and central regions of the 
GBR from September 29 to October 22, 2016 during RV Investigator voyage IN2016_V05 (Figure 1). This 
data set was generously provided by Jones et al. (2018), where detailed sampling and measurement proto-
cols can be found. Seawater samples were taken at subhourly to 5-hourly frequency at 0–5-m depth using 
the underway seawater system. Samples were either immediately analyzed for DMSw or preserved with 
10% hydrochloric acid for later onshore analysis of DMSPt. DMSw was measured with a purge and trap gas 
chromatograph (GC) fitted with a flame photometric detector (GC-FPD) up to October 14, at which point 
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Figure 1.  Map of northeast Queensland, Australia, showing the 
boundary of the Great Barrier Reef Marine Park (black outline) and DMSw 
sampling locations and daily mean concentration during RV Investigator 
voyage IN2016_V05. Satellite imagery © Google Earth 2020. DMSw, 
dimethylsulfide concentration.
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the equipment was required for Conductivity-Temperature-Depth measurements. From October 14 to 22, 
DMSw was measured with an Equilibrator Inlet-Proton Transfer Reaction Mass Spectrometer (EI-PTR-MS) 
(Kameyama et al., 2009; Omori et al., 2017), which yielded results in agreement with the GC-FPD (Jones 
et al., 2018). DMSPt concentration in 100 ml seawater was determined using a GC-mass spectrometer oper-
ating in Single Ion Monitoring mode as described in .Deschaseaux et al. (2018) DMSw and DMSPt measure-
ments had a detection limit of 0.1 pmol (Jones et al., 2018).

Field and laboratory experiments have demonstrated that DMS concentration in corals and reef seawaters 
is affected by SST, PAR (and water clarity), salinity, and tidal height (Gardner et al., 2016; Jones et al., 2007; 
Raina et  al.,  2013). These variables were therefore used as potential predictors of DMSw in the GBR. 
Wind-driven mixing and phytoplankton dynamics also influence DMSw (Broadbent & Jones, 2006; Gabric 
et al., 2008; Stefels, 2000) and are, respectively, represented through the inclusion of wind speed (WS) and 
chlorophyll-a (CHL) as a proxy for phytoplankton biomass.

The DMSw (nmol L−1) and DMSPt (nmol L−1) measurements were provided by Jones et al.  (2018). Cor-
responding underway measurements of SST (°C), incident PAR (mol m−2 h−1), sea surface salinity (SSS: 
psu) and WS (m s−1) were downloaded from the Commonwealth Scientific and Industrial Research Or-
ganisation (CSIRO) Marlin online repository (https://www.marlin.csiro.au). Diffuse attenuation coefficient 
(k490: m−1) as a proxy for water clarity, and CHL (mg m−3) were not available from in the in-situ GBR data 
set. Daily mean k490 and CHL were obtained from the Moderate Resolution Imaging Spectroradiometer 
(MODIS) sensor aboard the Aqua and Terra satellites. Daily total PAR (mol m−2 d−1) was also downloaded 
at 0.04-degree (∼4 km) resolution for each survey location from NASA OceanColor (https://oceancolor.
gsfc.nasa.gov). To account for light attenuation at the sea surface, MODIS total PAR was reduced by the 
corresponding k490 value for a depth of 5 m, which corresponds to the sampling depth of 0–5 m. Although 
many coral reefs reside at depths greater than 5 m, coral reef seawaters are generally well mixed due to tidal 
and wind-driven mixing (Davis et al., 2020; Middleton et al., 1994). Therefore, we assume that DMSw con-
centrations in the upper 5 m are representative of the water column and are most important for calculating 
the DMS sea-air flux.

Tidal height was also provided with the DMSw data set for 8 of the 24 survey days when the RV Investigator 
was close to the Slashers Reefs in the central GBR (18.5°S, 147°E). Jones et al. (2018) separated tidal height 
and corresponding DMSw into rising and falling tides and analyzed each data set separately. Significant 
positive correlations were identified between DMSw and both rising and falling tide height. These correla-
tions reflected an increase in DMSw as tides fell, followed by a second increase in DMSw as tides rose (Jones 
et al., 2018), due to dissolution of DMS-rich coral mucous in tidal slack water (Hopkins et al., 2016). For this 
work, tidal data were not separated into rising and falling tides and consequently, there was no significant 
correlation between DMSw and tidal height (p > 0.05, n = 133). Tidal height is more important for meas-
urements of DMSw in seawater directly over the shallow coral reef flat (Jones et al., 2018). Given that the 
RV Investigator sampled deeper coral reef lagoon waters (waters surrounding the coral reef platforms), tidal 
height was not included as a potential predictor of DMSw in the GBR.

2.2.  Correlation and Multiple Linear Regression

To identify the strongest predictors of DMSw in the GBR, hourly (n = 184) and daily (n = 24) mean DMSw 
was correlated with each variable. Graphical analysis determined DMSw (1.4  ±  0.07  nmol  L−1), DMSPt 
(8.5 ± 0.6 nmol L−1), total daily PAR at 5 m (49.2 ± 0.2 mol m−2 d−1) and WS (6.6 ± 0.4 m s−1) to be approx-
imately normally distributed. Values in parentheses represent the mean ± two standard errors (SE). SST 
was left skewed due to the dominance of values above the mean (25.9 ± 0.09 °C). Incident PAR was right 
skewed due to the inclusion of nighttime data (2.7 ± 0.4 mol m−2 d−1), as was SSS (35.5 ± 0.02 psu) and 
CHL (0.19 ± 0.01 mg m−3) due to the dominance of values below the mean. A conservative significance level 
(α = 0.01) was used to account for nonnormality and outliers which are common in environmental data. A 
multiple linear regression was then derived between DMSw and the strongest predictor variables.
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2.3.  Estimating DMSw in the GBR

A climatology (2001–2019) of DMSw was calculated from satellite observations in the GBR using the mul-
tiple linear regression derived from the RV Investigator IN2016_V05 data set. Daily data for each predictor 
variable were downloaded from MODIS Aqua and Terra at 0.04-degree resolution for the GBR (9.5°S–25°S, 
142°E−154°E) from NASA OceanColor (https://oceancolor.gsfc.nasa.gov). Given the high number of miss-
ing observations in the high-resolution MODIS data set, a 30-days moving average of each variable was 
used. All data beyond the Great Barrier Reef Marine Park (GBRMP) boundary defined in Figure 1 were 
excluded.

2.4.  DMS Sea-Air Flux

To calculate DMS sea-air flux, instantaneous wind speed at 10 m (U10: m s−1) was derived every 3 h from 
ERA5 0.25-degree u and v-wind components (Copernicus Climate Change Service, 2019). Calculated DMSw 
and MODIS SST were regridded to a 0.25-degree resolution. DMS sea-air flux was then calculated from 
daily DMSw, SST, and each U10 measurement. U10 was derived every 3 h to avoid underestimating DMS flux 
calculated from daily mean wind speed.

Sea-air gas exchange is calculated as the product of the total gas transfer velocity (Kw) and the concentra-
tion difference between the sea surface (Cw) and atmosphere (Ca) as follows: Flux = KwCw-Caα, where α is 
the solubility of DMS (Liss & Slater, 1974). DMS concentration is typically orders of magnitude lower in 
the atmosphere than at the sea surface and so, Ca is assumed to be zero. The resulting simplified equation 
(Equation 1) calculates DMS sea-air flux (µmol m−2 d−1) from Kw (cm h−1) and Cw (nmol L−1). This common 
assumption can lead to a global flux overestimation of up to 5% (Johnson et al., 2011)

 w wFlux K C� (1)

For this analysis, three parameterizations for Kw are used to provide a range of DMS flux estimates. The pa-
rameterizations of Goddijn-Murphy et al. (2012) and Nightingale et al. (2000) specify that the DMS transfer 
velocity increases linearly with U10 and provide a relatively high estimate of DMS sea-air flux. These two 
parameterizations were derived for carbon dioxide and are normalized to a Schmidt number of 660 for DMS 
(ScDMS). Goddijn-Murphy et al. (2012) assume that Kw is equivalent to the water-side transfer velocity (kw) 
(Equation 2), which is normalized to the SST-dependent ScDMS calculated as follows: ScDMS = 2,674-147.12 
SST+3.726 SST2-0.038 SST3 (Saltzman et al., 1993)

    
0.5

,660 , 660 102.1 2.8 / 600 .w w DMSK k U Sc� (2)

For the parameterization of Nightingale et al. (2000), Kw is calculated as a function of both the water-side 
and air-side DMS transfer velocities. For this parameterization, kw is also linearly related to U10 (Equation 3) 
and is normalized to the SST-dependent ScDMS (Saltzman et al., 1993)

   
0.52

,660 10 100.222 0.333 / 600w DMSk U U Sc� (3)

Total DMS transfer velocity is then calculated using Equation 4 (McGillis et al., 2000; Nightingale et al., 2000). 
The atmospheric gradient fraction ( a) is defined by     ,6601 / 1 /a a wk k  (McGillis et al., 2000), where 
α is the solubility coefficient for DMS (11.4 at 26 °C) and ka is the air-side transfer velocity calculated as 

a function of U10 and the molecular weight of DMS and water as follows:  
0.5

10659 62.13 / 18.02ak U  
(Kondo, 1975)

  ,660 ,660 1 .w w aK k� (4)

The third Kw parameterization suggests that the DMS gas transfer velocity decreases for wind speeds ex-
ceeding 10 m s−1 and provides a more conservative estimate of DMS sea-air flux (Vlahos & Monahan, 2009). 
The divergence of the DMS transfer velocity at high wind speeds (>10 m s−1) is accounted for by includ-
ing an attenuation of the Henry's Law constant (Vlahos & Monahan, 2009). For this parameterization, Kw 
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is calculated using Equation 5 as a function of both      
24 5

104 10 4 10wk U  and  100.2 0.3ak U  
(Schwarzenbach et al., 1994; Vlahos & Monahan, 2009). The parameterizations for kw and ka are given in 
units of cm s−1 and are converted to cm h−1 in order to calculate the total DMS transfer velocity


 

   
 

1

,660
1 1

w
w a atten

K
k k H

� (5)

The attenuated Henry's Law constant for DMS (Hatten) is calculated using Equation 6, where H is the Hen-
ry's Law constant in seawater (0.089) (Przyjazny et al., 1983), B is the surface area of bubbles under the sea 

surface given by   
3

100.09 / 10B U  and Cmix/Cw is the solubility enhancement of DMS, calculated to be 40 
from Vlahos and Monahan (2009)

  / 1 /atten B mix wH H C C� (6)

During coral exposure to air at low tide, DMS is directly released to the atmosphere from corals and the 
mucous layer which quickly forms on the coral surface upon exposure (Hopkins et al., 2016). Direct cor-
al-atmosphere DMS exchange can result in large spikes of atmospheric DMS concentration (Hopkins 
et al., 2016; Jones et al., 2007; Swan et al., 2017b). However, coral aerial exposure is not currently accounted 
for in DMS sea-air flux calculations. In this study, we attempt to quantify total DMS emissions from the 
GBR by including a laboratory-based estimate of direct coral-atmosphere DMS flux. Hopkins et al. (2016) 
measured the rate of DMSa production from Acropora horrida periodically exposed to air. Coral nubbins 
were obtained from parent colonies sampled in the Indo-Pacific and an estimate of coral aerial exposure at 
Heron Island in the southern GBR was used (Hopkins et al., 2016), where extreme low tides expose corals 
for about 2 h on 6 days per month (Wild et al., 2004). Assuming a similar pattern of coral exposure across 
the GBR, and given that Acropora is the dominant coral genus, it was estimated that corals in the GBR 
exposed to air release 9–35 µmol m−2 d−1 (mean 22 µmol m−2 d−1). A fraction of the mean flux estimate is 
added to Equation 1, depending on the percentage cover of coral reefs within each 0.25 × 0.25-degree grid. 
Swan et al. (2017b) observed that corals have the strongest influence on DMSa levels during winter when 
the background oceanic flux is relatively low. Adding a fixed estimate of coral-atmosphere DMS release to 
our flux estimate is consistent with these findings, as the percentage contribution of aerially exposed corals 
to DMS flux is higher in winter. These intermittent spikes can exceed 40 nmol m−3 (1,000 ppt) and persist 
for up to 8 h during low and rising tides (Swan et al., 2017b). Tidal range is higher in the far northern GBR 
(Jackson et al., 2018), which could affect the frequency and extent of coral exposure to air at low tide. As-
suming direct coral-atmosphere DMS flux for only 2 h on 6 days per month is therefore a reasonable and 
possibly conservative estimate.

3.  Results
3.1.  Correlation Analysis

Hourly mean observed DMSw positively correlated with SST and WS, and negatively with SSS and instanta-
neous PAR (Table 1). Hourly mean DMSPt and CHL did not significantly correlate with DMSw.

Correlation coefficients were also calculated using a daily mean of each variable (n = 24); however, no 
significant correlations occurred (p > 0.01). To reduce the variability in this limited data set, we also calcu-
lated correlation coefficients for a 3-day moving average of each variable (n = 24). This resulted in similar 
correlations as the hourly mean data set, which increased in strength due to reduced variability (Table 1). At 
this time scale, instantaneous PAR no longer significantly correlated with DMSw likely due to averaging out 
the diel cycle. However, daily total PAR from MODIS observations was strongly positively correlated with 
DMSw, reflecting a relative increase in concentration for days when total irradiance was high. Wind-driven 
mixing contributes to DMS sea-air exchange, and changes in SST, SSS, nutrients, and phytoplankton dy-
namics, which can explain the positive correlation between hourly mean DMSw and WS. Three-day mov-
ing mean WS did not correlate with DMSw, yet DMSPt strongly positively correlated with DMSw (Table 1). 
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Significant relationships between 3-day moving mean DMSw and potential predictor variables (SST, SSS, 
PAR at 5 m, and DMSPt) are shown in Figure 2.
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3

Hourly mean (n = 184a) 3-days moving mean (n = 24)

r p r p

SST 0.29 <0.001 0.56 <0.01

SSS −0.28 <0.001 −0.62 <0.01

WS 0.23 <0.01 0.39 0.06

Instantaneous PAR −0.21 <0.01 −0.19 0.37

Total PAR at 5 mb 0.19 <0.01 0.57 <0.01

DMSPt 0.14 0.08 0.63 <0.01

CHLb −0.08 0.26 −0.10 0.65
aCorresponding WS and DMSPt were not available for all DMSw measurements. For hourly mean WS, n = 183 and for 
DMSPt, n = 169. bData are derived from remotely sensed observations. Significant (p < 0.01) correlations are in bold.

Table 1 
Pearson's Linear Correlation Between Hourly and 3-Day Moving Mean DMSw and Predictor Variables

Figure 2.  Relationship between 3-day moving mean observed DMSw and (a) SST (r = 0.56), (b) SSS 
(r = −0.62), (c) total PAR at 5 m (r = 0.57), and (d) DMSPt (r = 0.63). DMSw, dimethylsulfide concentration; 
SST, sea surface temperature; SSS, sea surface salinity; PAR, photosynthetically active radiation; DMSPt, total 
dimethylsulfoniopropionate.
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3.2.  Multiple Linear Regression

A multiple linear regression was derived from the 3-day moving mean 
data set (Equation 7). The resulting regression with standardized SST and 
total PAR as predictor variables explained 71% of the variance in observed 
DMSw (Figure 3; r2 = 0.76, adjusted r2 = 0.71, p < 0.001, n = 24). Quad-
ratic terms were included to better reflect the observed relationships be-
tween DMSw and SST (Figure 2a) and PAR (Figure 2c). This ensured that 
the regression residuals were normally distributed, with equal variances 
across the range of calculated DMSw. Removing these terms resulted in 
nonrandom residuals, indicating that the regression model was not reli-
able. Although SSS and DMSPt correlated with DMSw (Table 1), includ-
ing these as predictor variables did not improve the regression. Including 
either SST or SSS with PAR as predictors resulted in an r2 > 0.6. How-
ever, SST and SSS are strongly inversely correlated (r = −0.9, p < 0.01) 
and consequently, including both variables in the regression resulted in 
nonrandom residuals and a negative coefficient for SST, which does not 
reflect the relationship shown in Figure 2a

    2 20.10 0.34 0.14 0.12 1.28wDMS SST SST PAR PAR� (7)

The parameterization of DMSw as a function of SST and PAR at 5 m is 
used to calculate DMSw in the GBR from remotely sensed observations. 
It is important to note that DMSw in coral reefs does not linearly increase 

with SST when coral thermal stress thresholds are exceeded (Fischer & Jones, 2012; Jones et al., 2007). To 
avoid overestimating DMSw for days when SST exceeded this threshold, SST in Equation 7 is substituted 
with an estimated coral thermal stress threshold.

The National Oceanic and Atmospheric Administration (NOAA) Coral Reef Watch define a coral thermal 
stress threshold as 1 °C above the SST of the climatologically hottest month of the year (Liu et al., 2006). 
This estimate is used to derive indices to predict coral bleaching (e.g., Degree Heating Weeks) and predict 
the extent and severity of coral bleaching events well in the GBR (Bainbridge, 2017; Hughes et al., 2018; 
Jackson et al., 2018; Skirving et al., 2018). These coral bleaching indices assume that living corals can tol-
erate summer PAR levels without bleaching (Skirving et al., 2018); however, when summer PAR combines 
with SST above the thermal stress threshold, coral bleaching (and a decline in DMSw) can occur (e.g., Jones 
et al., 2007). Thus, for days when SST ≥ thermal stress threshold, DMSw was calculated from Equation 7, 
substituting SST for the coral thermal stress threshold. This threshold decreased with latitude, ranging from 
27.5 °C in the southern GBR to 30 °C in the northern GBR. This reduced the average calculated DMSw in 
the GBR by ∼0.01 nmol L−1 in late summer.

3.3.  Climatology of DMSw

A time series of DMSw in the GBR was calculated using Equation 7 from standardized MODIS observations 
of SST and total PAR at 5 m from 2001 to 2019. We assume that the empirical relationship derived between 
DMSw, SST, and PAR at 5 m in the southern and central GBR can be used to estimate DMSw beyond the 
region and time frame for which Equation 7 was defined. It is recognized that this may not be an accurate 
representation of DMSw in the northern GBR or for other times of the year; however, in the interest of es-
timating total DMSw and flux, it is important to include an estimate of DMSw for the entire GBR and time 
period.

Calculated annual mean DMSw in the GBR was 1.5 nmol L−1, ranging from an average of 1.2 nmol L−1 in 
winter to 1.9 nmol L−1 in summer, with little spatial variability (<0.1 nmol L−1) (Figure 4). SST decreased 
with latitude and ranged from an average of 24 °C (20–26 °C) in winter to 27 °C (25.5–29 °C) in summer. 
Seasonal average PAR at 5 m ranged from 40 mol m−2 d−1 (35–44 mol m−2 d−1) in winter to 50 mol m−2 d−1 
(46–53 mol m−2 d−1) in summer, decreasing with latitude in winter yet increasing with latitude in summer. 
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Figure 3.  Observed vs. calculated DMSw, showing the regression line 
(−) ± 95% confidence interval bounds (⋯). DMSw, dimethylsulfide 
concentration.
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Although a small latitudinal gradient is evident in winter, with higher DMSw in the northern GBR due to 
higher SST and PAR, no clear latitudinal gradient is evident in the summer or annual mean DMSw concen-
tration (Figure 4). This is due to the inverse meridional trends in summer SST and PAR, which resulted in 
uniform calculated annual and summer average DMSw (Figure 4). We assume that living corals and marine 
algae are adapted to the typical local environment and so uniform average concentrations can be expected 
throughout the GBR.

Calculated DMSw area-averaged over the GBR ranged from 1  ±  0.01 (2 SE)  nmol  L−1 in late winter to 
2.1  ±  0.1  nmol  L−1 in summer (Figure  5). Daily mean observed DMSw during the RV Investigator voy-
age was 1.5  ±  0.2  nmol  L−1, similar to mean calculated DMSw for the same time period and location 
(1.3 ± 0.04 nmol L−1) (Figure 5a). The climatology of calculated DMSw shows a seasonal signal, with in-
creased concentration in early summer (October-December), followed by a plateau in concentration in Jan-
uary-February when SST and PAR were highest and when coral bleaching typically occurs (Figure 5b).

3.4.  Climatology of DMS Sea-Air Flux

DMS sea-air flux was calculated from MODIS observations of SST, U10 derived from ERA5 u and v-wind 
components and the DMSw time series (Figure 5a). Three parameterizations for Kw were used to calculate 
DMS sea-air flux and the mean of these is mapped in Figure 6. Annual mean DMS flux averaged over the 
GBR was 4.9 µmol m−2 d−1 (0.9–11.4 µmol m−2 d−1), ranging from an average of 4.3 µmol m−2 d−1 (0.7–
10.1 µmol m−2 d−1) in winter, to 5.4 µmol m−2 d−1 (1.2–12.6 µmol m−2 d−1) in summer (Figure 6). DMS flux 
remained consistently high over the coral reef, representing direct coral-atmosphere DMS exchange during 
coral exposure to air at low tide.

The climatologies of DMS sea-air flux area-averaged over the GBR show a seasonal signal, ranging from 
an average of 3.1 ± 0.3 µmol m−2 d−1 in late winter to 7.3 ± 1.6 µmol m−2 d−1 in late summer (Figure 7). 
Including an estimate of coral-atmosphere DMS release at low tide increased the GBR-averaged flux by 
1.5 µmol m−2 d−1. Nightingale et al. (2000) and Goddijn-Murphy et al. (2012) assume that sea-air flux in-
creases linearly with U10. However, Vlahos and Monahan (2009) suggest that the DMS gas transfer velocity 
decreases when wind speed exceeds 10 m s−1, thereby providing a more conservative estimate of DMS sea-
air flux (Figure 7). From the three DMS sea-air flux parameterizations (Figure 7), it is estimated that the 
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Figure 4.  (a) Annual, (b) winter (May-October), and (c) summer (November-April) average calculated DMSw in the GBR. Northeastern Australia and the 
location of coral reefs in the GBRMP are shown in black. DMSw, dimethylsulfide concentration; GBR, Great Barrier Reef; GBRMP, Great Barrier Reef Marine 
Park.
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347,000 km2 GBR and lagoon waters release 0.03–0.05 Tg yr−1 of DMS (1,500–2,100 mol km2 yr−1), which is 
equivalent to 0.02 Tg yr−1 of sulfur.

4.  Discussion
SST and PAR synergistically impact coral physiological stress (Rosic et al., 2020) and were correlated with 
DMSw concentration in the GBR. Both field and laboratory analyses have demonstrated an increase in in-
tracellular and dissolved DMS(P) production from corals and in reef seawaters in response to increasing 
temperature and solar irradiance (Deschaseaux et al., 2014b; Gardner et al., 2016; Jones et al., 2007), until a 
coral physiological tolerance threshold is approached (Jones et al., 2007, 2018).

DMSw negatively correlated with instantaneous PAR (Table 1), reflecting photo-oxidation of DMS(P) dur-
ing the day (Gabric et al., 2008; Galí et al., 2013). Conversely, DMSw positively correlated with daily total 
PAR (Table 1), reflecting a relative increase in coral and algal DMS production with solar irradiance (Des-
chaseaux et al., 2014b; Jones et al., 2007). DMSw also increased with decreasing SSS, supporting previous 
findings that DMS(P) are involved in the coral hyposalinity stress response (Gardner et al., 2016). Hourly 
mean DMSw did not correlate with DMSPt (Table 1), perhaps indicating that cleavage of DMSP is not the 
rate-limiting process in DMSw production. DMS(P) removal mechanisms such as rapid photo-oxidation 
during the day, microbial consumption and vertical mixing in the water column can confound the relation-
ship between DMSP and DMS at the sea surface, highlighting the complexity in DMS(P) cycling (Gabric 
et al., 2008; Galí et al., 2013).
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Figure 5.  (a) Calculated DMSw averaged over the entire GBR from 2001 to 2019. Blue dots represent the daily mean 
observed DMSw in the southern GBR (∼18°S–23°S). (b) Calculated DMSw climatology ±2 SE (shaded regions). DMSw, 
dimethylsulfide concentration; GBR, Great Barrier Reef; SE, standard errors.



Journal of Geophysical Research: Oceans

The regression derived between DMSw, SST, and PAR explained 71% of the variance in observed DMSw. 
The resulting calculated DMSw agrees with observed seasonal trends in the GBR (Jones et al., 2018), indi-
cating that the regression predicts DMSw reasonably well. The remaining variability was likely driven by 
nonlinear processes such as DMS(P) cycling by marine microbes (Bourne et al., 2016; Bullock et al., 2017; 
Sun et al., 2016), photolysis and vertical mixing in the water column (Gabric et al., 2008; Galí et al., 2013; 
Toole et  al.,  2003). The relative contribution of corals and marine algae to measured DMSw cannot be 
quantified from this analysis. However, Acropora corals are the dominant coral genus throughout the GBR 
and are a relatively abundant source of DMSP for liberation of DMS to the coral reef environment (Swan 
et al., 2017a). DMSw is often higher in seawater sampled directly over the coral reef compared to the lagoon 
(Jones et al., 2018) and so, corals likely contributed a large portion of measured DMSw.
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Figure 6.  (a) Annual, (b) winter (May-October), and (c) summer (November-April) average DMS flux in the GBR. Values represent the average of the three 
DMS sea-air flux parameterizations calculated in this analysis. Northeastern Australia and the location of coral reefs in the GBRMP are shown in black. DMS, 
dimethylsulfide; GBR, Great Barrier Reef; GBRMP, Great Barrier Reef Marine Park.

Figure 7.  Climatology ±2 SE (shaded region) of DMS sea-air flux area-averaged over the GBR, calculated from 
the parameterization of Nightingale et al. (2000) (black), Goddijn-Murphy et al. (2012) (red), and Vlahos and 
Monahan (2009) (blue). SE, standard errors; DMS, dimethylsulfide; GBR, Great Barrier Reef.
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The parameterization of DMSw as a function of PAR at 5 m agrees with that of Vallina and Simó (2007), who 
derived a linear regression between DMSw and solar radiation in the upper mixed layer. The relationship 
with solar radiation explained >90% of the variance in a global monthly climatology of DMSw derived from 
the Global Seawater DMS database (Kettle et al., 1999). While Vallina and Simó (2007) suggested that SST 
is not an important predictor of DMSw, the global DMS database contains very few DMSw surveys close to 
a coral reef. In the southern GBR, PAR alone explained only ∼30% of the variance in observed DMSw and 
required a second predictor variable of SST to explain a significant portion of the variance in observed 
DMSw. The importance of SST in predicting DMSw likely reflects the significant impact of thermal stress on 
DMS production by corals and zooxanthellae (Raina et al., 2013). Although the range of measured SST was 
narrow (3.5 °C), laboratory studies have demonstrated that small changes in SST can significantly influence 
DMS production by corals (Deschaseaux et al., 2014b). Further research is needed to establish the validity 
of the GBR observed relationship between DMSw, SST, and PAR in other coral reef systems.

The parameterization of DMSw in coral reef seawaters as a function of SST and PAR is a simple approach 
and does not account for the impacts of other factors which may influence DMS biosynthesis such as ocean 
acidification and changes to coral reef ecosystem structure. Mesocosm experiments in the subtropical North 
Atlantic revealed a decrease in algal-derived DMS with lower pH due to reduced rates of microbial catab-
olism of DMSP (Archer et al., 2018). The same could be true of coral-derived DMS production, which is 
partially driven by microbial DMSP catabolism (Raina et al., 2009). Other studies have demonstrated that 
temperature has a stronger influence on DMS production in algae, where increased production in response 
to temperature outweighed the decline in biosynthesis due to acidification (Arnold et al., 2013). Ongoing 
coral reef degradation, due to coral bleaching, crown of thorns outbreaks and changing water quality may 
also affect DMSw concentration in reef seawaters (discussed in Jackson et al. (2020)). A decline in coral-de-
rived DMSw could occur with reduced coral cover; however, DMS-producing marine algae can dominate 
degraded coral reef ecosystems (De'ath & Fabricius, 2010; McCook & Diaz-Pulido, 2002) and counteract a 
decline in coral-derived DMS production. Further research is required to determine the synergistic impacts 
of ocean warming, ocean acidification, and coral reef degradation on DMS(P) biosynthesis in coral reefs. 
Additional measurements of DMSw in coral reef seawaters are also needed and will greatly improve the pa-
rameterization presented in this analysis. Nevertheless, the results provide insight into the source strength 
of coral reefs to the atmospheric sulfur budget.

Calculated DMSw area-averaged over the GBR ranged from ∼1 nmol L−1 in late winter to ∼2.4 nmol L−1 in 
late summer (Figure 5a). Reported mean DMSw concentrations for the GBR lagoon (deeper waters which 
surround the coral reef platforms) range from 0.8 nmol L−1 (0.6–1 nmol L−1, n = 4) in winter to 1.9 nmol L−1 
(0.1–3.4 nmol L−1, n = 224) in summer (Jones et al., 2018). DMSw is typically higher in shallow waters 
over the coral reef, ranging from 1.7 nmol L−1 (0.1–7.7 nmol L−1, n = 160) in winter to 3.1 nmol L−1 (0.1–
54 nmol L−1, n = 226) in summer (Jones et al., 2018). The range of calculated DMSw falls within the mean 
range reported for the GBR lagoon and coral reef waters. This was expected given that the RV Investigator 
data set is comprised of measurements taken both in the deeper lagoon and at several stations in shallower 
waters close to the coral reef (Figure 1). DMSw calculated from the multiple linear regression derived from 
the RV Investigator data set may therefore underestimate concentrations over the coral reef (Figure 4).

The range of calculated DMSw is ∼1 nmol L−1 lower than that reported in the Lana et al. (2011) climatology 
for the Eastern Australian biogeochemical province (∼2–4 nmol L−1). The seasonal summer peak in DMSw 
also occurs later in our climatology (February-March, rather than October), due to prescribing a maximum 
DMSw value for days when SST exceeds the coral thermal stress threshold. Imposing an upper limit on 
DMSw accounted for the effect of high SST and irradiance on coral and algal DMS production. High SST 
can reduce the PAR absorption capacity of algal photosystems, leading to excess production of ROS and 
oxidative damage in the coral holobiont (Lesser, 2006, 2011). DMS(P) scavenge ROS, forming DMSO, which 
results in a decline in ambient DMSw concentration (Deschaseaux et al., 2014a; Fischer & Jones, 2012; Jones 
et al., 2007). The DMSw climatology presented in this analysis may be closer to contemporary concentrations 
in the GBR after back-to-back coral bleaching events and the loss of up to ∼40% of hard coral cover between 
March and November 2016 (Hughes et al., 2018). The RV Investigator sampled DMSw in the GBR 8 months 
after the 2016 mass coral bleaching event and this may be one reason why measured DMSw was lower than 
other studies have documented in the GBR (e.g., Jones et al., 2018).
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Average DMS sea-air flux in the GBR ranged from ∼3  µmol  m−2  d−1 in late winter to a maximum of 
∼11 µmol m−2 d−1 in late summer (Figure 7). This estimate is similar in magnitude to that presented in Lana 
et al. (2011) for the Eastern Australian biogeochemical province (∼5–15 µmol m−2 d−1). Again, the seasonal 
peak in sea-air flux occurs later in summer in our climatology (February-March, rather than October), likely 
due to prescribing an upper limit on DMSw for SST beyond the coral thermal stress threshold. DMS flux was 
highest over the coral reef (Figure 6), due to the inclusion of a direct coral-atmosphere DMS flux estimate. 
Field-based findings have demonstrated that the southern GBR is a strong, albeit intermittent, source of 
DMS above the background oceanic signal (Jones et al., 2007; Swan et al., 2017b). However, there remains 
uncertainty in the source strength of direct coral-atmosphere DMS release.

Swan et al.  (2017b) estimate that only 0.2 µmol m−2 d−1 is released from the coral reef, based on meas-
urements of DMSa made at a fixed location at Heron Island (southern GBR). This is significantly lower 
than the estimate of ∼22 µmol m−2 d−1 provided by Hopkins et al.  (2016), possibly due to difficulties in 
distinguishing the coral reef and oceanic DMSa sources under strong atmospheric mixing conditions from 
the prevailing southeasterly trade winds. The estimate provided by Hopkins et al. (2016) is the only direct 
measurement of coral-atmosphere DMS release; however, this estimate assumes that Acropora spp. are the 
sole source of direct coral-air DMS flux and does not account for variability in the extent of coral exposure or 
the complexity of the reef environment (Hopkins et al., 2016). Inclusion of this previously unaccounted for 
influence on DMS flux yields a more accurate estimate of the contribution of coral reefs to the atmospheric 
sulfur budget. Further research is needed to reduce the uncertainty in coral-air DMS flux and to accurately 
scale laboratory-derived fluxes to the natural coral reef environment.

We estimate that 0.03–0.05 Tg yr−1 of DMS is released from the GBR (0.02 Tg yr−1 of sulfur). This agrees 
with a previous estimate of 0.03 Tg yr−1 of DMS for the GBR lagoon and associated coral reefs, calculated 
from field measurements of DMSw over the past three decades (Jones et al., 2018). The range is slightly 
higher due to the inclusion of direct coral-atmosphere DMS release in our flux calculations. Assuming that 
DMS production and flux are constant across coral reefs, global tropical coral reefs (∼600,000 km2) could 
release 0.06–0.08 Tg yr−1 of DMS (0.03–0.04 Tg yr−1 of sulfur). Global sea-air flux is estimated to be 17.6–
34.4 Tg yr−1 of sulfur in the form of DMS (Kettle & Andreae, 2000; Lana et al., 2011; Land et al., 2014). The 
contribution of sulfur as DMS from coral reefs represents 0.1–0.2% of global sea-air flux estimates, which is 
a disproportionate amount of sulfur released from ∼0.1% of the ocean surface (Spalding et al., 2001).

Global modeling studies have found that marine DMS is an important source of sulfate aerosol, influencing 
climate (Gabric et al., 2013; Mahajan et al., 2015; Thomas et al., 2010; Woodhouse et al., 2010) and providing 
a cooling effect of up to 0.45 °C (Fiddes et al., 2018). Given that coral reefs are strong regional sources of 
DMS, it is hypothesized that DMS emissions may influence the local radiative balance (Jackson et al., 2020; 
Jones et al., 2018; Swan et al., 2016) via a negative feedback on aerosol and cloud formation (e.g., Cropp 
et al., 2007). However, this coral reef source of atmospheric sulfur is not currently accounted for in global 
climatologies. Fiddes et al. (2020) was the first model study to explicitly account for the coral reef source of 
DMS by adding a laboratory-based estimate of 50 nmol to the Lana et al. (2011) DMSw climatology, scaled 
to the percentage of coral cover. This approach estimated that coral reefs release 0.3 Tg yr−1 of DMS (Fid-
des et al., 2020), an order of magnitude higher than what is estimated by this study. Despite the high coral 
reef DMS flux estimate, Fiddes et al. (2020) found only a small response in nucleation and Aitken mode 
aerosol number concentrations and mass. This implies that coral reef DMS emissions are not important in 
contemporary regional climate, likely due to the dominance of anthropogenic, continental, and sea spray 
aerosols (Chen et al., 2019; Mallet et al., 2016). However, observational studies in the GBR suggest that DMS 
flux could influence local aerosol processes (Modini et al., 2009; Swan et al., 2016), which are perhaps not 
captured by global or regional climate models. Therefore, the importance of coral reef-derived DMS on the 
local radiative balance remains uncertain. Future work will test if the inclusion of coral reef-derived DMS in 
regional climatologies and regionally focused earth system models improves model accuracy and addresses 
the importance of coral reefs in biogeophysical processes.

JACKSON ET AL.

10.1029/2020JC016783

13 of 17



Journal of Geophysical Research: Oceans

5.  Conclusions
This analysis supports previous findings that coral reefs are a significant regional source of DMS. The re-
lationship between DMSw, SST, and PAR is successfully parameterized and used to estimate the source 
strength of coral reefs to the sulfur cycle. The release of DMS from corals exposed to air at low tide is an im-
portant process that is not accounted for in current DMS sea-air flux calculations. By accounting for direct 
coral-atmosphere DMS release, we show that the total contribution of coral reefs is higher than previous 
estimates. Assuming that DMS production and sea-air flux are constant across coral reefs, 0.08 Tg yr−1 of 
DMS (0.04 Tg yr−1 of sulfur) could be released from tropical coral reefs, with the potential to influence the 
local radiative balance. This is the first parameterization of seawater DMS concentration in coral reefs and 
provides valuable insight into the role of coral reefs in global sulfur cycling.

Our DMSw proxy can be used to investigate how changes to SST and PAR (due to changes in cloud cover and 
water clarity) might affect DMS production and flux from coral reefs in future. Ongoing ocean warming, 
acidification, and declining water quality are adversely affecting coral reef ecosystems and may lead to an 
ecological regime shift as coral resilience to disturbances continues to decline. This may lead to a change 
in DMS production and sea-air flux from coral reefs, with potential impacts on the local radiative balance.
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