12 research outputs found

    SNF1-related protein kinases : activation, responses to osmotic stress, and cuticle formation

    Get PDF
    Plants regulate their responses to changing environmental conditions to cope with stresses and survive under natural growth habitats. Growth and stress responses must be strictly balanced to prevent poor survival and compromised growth. The network of stress responses to various biotic and abiotic stressors is vast, interconnected, and includes multiple levels of regulation. Protein kinases play important roles in stress signalling as catalysts of phosphorylation, a modification that allows for a convenient way of rapidly adjusting protein functions. SNF1-RELATED PROTEIN KINASEs (SnRKs) are a central kinase superfamily that is involved in stress responses and energy balance in plants. The aim of my doctoral thesis was to investigate the roles of SnRKs in various signalling pathways. This included information about how SnRKs are regulated by upstream elements and potential subunits, how their activities could be manipulated chemically, and whether they are involved in regulation of cuticle formation. SnRKs were studied by measuring their kinase activities, by analysing the expression levels in various conditions, including drought and salt stress, by characterisation of several signalling mutants, and by modelling of the interaction between SnRK2.6 and other molecules. The activities of SnRK2s were influenced in vitro by KIN GAMMA (KING) proteins, which had been previously identified as putative regulators of signalling related to abscisic acid (ABA). ABA is a plant hormone that is involved in plant development and stress responses. My studies suggested that KINGs are probable negative regulators of ABA signalling also in vivo, although their effects on SnRK2s remained less clear. A potential activator of ABA signalling, pladienolide B, activated SnRK2.6. This information is useful for further studies of the functions of SnRK2s, or for enhancing stress tolerance of plants. In addition to the research on regulation of SnRK2s, their downstream signalling pathways were investigated in regards to cuticle formation. The ABA-dependent regulation pathway of cuticle formation was found to deviate from the main ABA signalling pathway at SnRK2s. In addition to SnRK2s, regulators of other members of the SnRK superfamily were also examined. GEMINIVIRUS REP-INDUCING KINASEs (GRIKs), previously identified as upstream regulators of SnRK1s, showed a capacity to phosphorylate a member of the third SnRK family (SnRK3s) in vitro. In vivo experiments also showed that GRIKS are involved in NaCl tolerance. The results of this thesis clarified several functions of SnRKs in plant stress signalling. The knowledge of the induction and regulation of stress responses in plants is valuable for the breeding of economically important plants, e.g. stress-tolerant crops

    Chemical activation of Arabidopsis SnRK2.6 by pladienolide B

    Get PDF
    Abscisic acid (ABA) is an important phytohormone mediating osmotic stress responses. SUCROSE NONFERMENTING 1 (SNF1)-RELATED PROTEIN KINASE 2.6 (SnRK2.6, also named OPEN STOMATA1 and SNF1-RELATED KINASE 2E) is central in the ABA signaling pathway; therefore, manipulating its activity may be useful to confer stress tolerance in plants. Pladienolide B (PB) is an mRNA splicing inhibitor and enhances ABA responses. Here, we analyzed the effect of PB on Arabidopsis SnRK2.6. PB enhanced the activity of recombinant SnRK2.6 in vitro through direct physical interaction as predicted by molecular docking simulations followed by mutation experiments and isothermal titration calorimetry. Structural modeling predicted probable interaction sites between PB and SnRK2.6, and experiments with mutated SnRK2.6 revealed that Leu-46 was the most essential amino acid residue for SnRK2.6 activation by PB. This study demonstrates the feasibility of SnRK2.6 chemical manipulation and paves the way for the modification of plant osmotic stress responses.</p

    Upstream kinases of plant SnRKs are involved in salt stress tolerance

    Get PDF
    Sucrose non-fermenting 1-related protein kinases (SnRKs) are important for plant growth and stress responses. This family has three clades: SnRK1, SnRK2 and SnRK3. Although plant SnRKs are thought to be activated by upstream kinases, the overall mechanism remains obscure. Geminivirus Rep-Interacting Kinase (GRIK)1 and GRIK2 phosphorylate SnRK1s, which are involved in sugar/energy sensing, and the grik1-1 grik2-1 double mutant shows growth retardation under regular growth conditions. In this study, we established another Arabidopsis mutant line harbouring a different allele of gene GRIK1 (grik1-2 grik2-1) that grows similarly to the wild-type, enabling us to evaluate the function of GRIKs under stress conditions. In the grik1-2 grik2-1 double mutant, phosphorylation of SnRK1.1 was reduced, but not eliminated, suggesting that the grik1-2 mutation is a weak allele. In addition to high sensitivity to glucose, the grik1-2 grik2-1 mutant was sensitive to high salt, indicating that GRIKs are also involved in salinity signalling pathways. Salt Overly Sensitive (SOS)2, a member of the SnRK3 subfamily, is a critical mediator of the response to salinity. GRIK1 phosphorylated SOS2 in vitro, resulting in elevated kinase activity of SOS2. The salt tolerance of sos2 was restored to normal levels by wild-type SOS2, but not by a mutated form of SOS2 lacking the T168 residue phosphorylated by GRIK1. Activation of SOS2 by GRIK1 was also demonstrated in a reconstituted system in yeast. Our results indicate that GRIKs phosphorylate and activate SnRK1 and other members of the SnRK3 family, and that they play important roles in multiple signalling pathways in vivo.España, MINECO IO2015-70946-

    EARLY RESPONSE TO DEHYDRATION 7 Remodels Cell Membrane Lipid Composition During Cold Stress in Arabidopsis

    Get PDF
    Plants adjust to unfavorable conditions by altering physiological activities such as gene expression. Although previous studies have identified multiple stress-induced genes, the function of many genes during the stress responses remains unclear. Expression of ERD7 (Early Response to Dehydration 7) is induced in response to dehydration. Here, we show that ERD7 plays essential roles in both plant stress responses and development. In Arabidopsis, ERD7 protein accumulated under various stress conditions including exposure to low temperature. A triple mutant of Arabidopsis lacking ERD7 and two closely-related homologs had an embryonic lethal phenotype, whereas a mutant lacking the two homologs and one ERD7 allele had relatively round leaves, indicating that the ERD7 gene family has essential roles in development. Moreover, the importance of the ERD7 family in stress responses was evidenced by the susceptibility of the mutant lines to cold stress. ERD7 protein was found to bind to several, but not all, negatively charged phospholipids, and was associated with membranes. Lipid components and cold-induced reduction of PIP2 in the mutant line were altered relative to wild type. Furthermore, membranes from the mutant line had reduced fluidity. Taken together, ERD7 and its homologs are important for plant stress responses and development and associated with modification of membrane lipid composition.</p

    Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch

    Get PDF
    Silver birch (Betula pendula) is a pioneer boreal tree that can be induced to flower within 1 year. Its rapid life cycle, small (440-Mb) genome, and advanced germplasm resources make birch an attractive model for forest biotechnology. We assembled and chromosomally anchored the nuclear genome of an inbred B. pendula individual. Gene duplicates from the paleohexaploid event were enriched for transcriptional regulation, whereas tandem duplicates were overrepresented by environmental responses. Population resequencing of 80 individuals showed effective population size crashes at major points of climatic upheaval. Selective sweeps were enriched among polyploid duplicates encoding key developmental and physiological triggering functions, suggesting that local adaptation has tuned the timing of and cross-talk between fundamental plant processes. Variation around the tightly-linked light response genes PHYC and FRS10 correlated with latitude and longitude and temperature, and with precipitation for PHYC. Similar associations characterized the growth-promoting cytokinin response regulator ARR1, and the wood development genes KAK and MED5A.Peer reviewe

    Dissecting Abscisic Acid Signaling Pathways Involved in Cuticle Formation

    No full text
    The cuticle is the outer physical barrier of aerial plant surfaces and an important interaction point between plants and the environment. Many environmental stresses affect cuticle formation, yet the regulatory pathways involved remain undefined. We used a genetics and gene expression analysis in Arabidopsis thaliana to define an abscisic acid (ABA) signaling loop that positively regulates cuticle formation via the core ABA signaling pathway, including the PYR/PYL receptors, PP2C phosphatase, and SNF1-Related Protein Kinase (SnRK) 2.2/SnRK2.3/SnRK2.6. Downstream of the SnRK2 kinases, cuticle formation was not regulated by the ABA-responsive element-binding transcription factors but rather by DEWAX, MYB16, MYB94, and MYB96. Additionally, low air humidity increased cuticle formation independent of the core ABA pathway and cell death/reactive oxygen species signaling attenuated expression of cuticle-biosynthesis genes. In Physcomitrella patens, exogenous ABA suppressed expression of cuticle-related genes, whose Arabidopsis orthologs were ABA-induced. Hence, the mechanisms regulating cuticle formation are conserved but sophisticated in land plants. Signaling specifically related to cuticle deficiency was identified to play a major role in the adaptation of ABA signaling pathway mutants to increased humidity and in modulating their immunity to Botrytis cinerea in Arabidopsis. These results define a cuticle-specific downstream branch in the ABA signaling pathway that regulates responses to the external environment

    Author Correction: Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch

    No full text
    International audienc

    Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch

    No full text
    Silver birch (Betula pendula) is a pioneer boreal tree that can be induced to flower within 1 year. Its rapid life cycle, small (440-Mb) genome, and advanced germplasm resources make birch an attractive model for forest biotechnology. We assembled and chromosomally anchored the nuclear genome of an inbred B. pendula individual. Gene duplicates from the paleohexaploid event were enriched for transcriptional regulation, whereas tandem duplicates were overrepresented by environmental responses. Population resequencing of 80 individuals showed effective population size crashes at major points of climatic upheaval. Selective sweeps were enriched among polyploid duplicates encoding key developmental and physiological triggering functions, suggesting that local adaptation has tuned the timing of and cross-talk between fundamental plant processes. Variation around the tightly-linked light response genes PHYC and FRS10 correlated with latitude and longitude and temperature, and with precipitation for PHYC. Similar associations characterized the growth-promoting cytokinin response regulator ARR1, and the wood development genes KAK and MED5A

    Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch

    No full text
    corecore