9 research outputs found

    Live cell superresolution-SIM imaging analysis of the intercellular transport of microvesicles and costimulatory proteins via nanotubes between immune cells

    Get PDF
    Halász, Henriett1,+, Ghadaksaz, Ali Reza1,2,+, Madarász, Tamás1, Huber, Krisztina2, Harami, Gábor3, Tóth, Eszter Angéla2, Osteikoetxea-Molnár, Anikó2, Kovács, Mihály3, Balogi, Zsolt5, Nyitrai, Miklós1,4, Matkó, János2,*, Szabó-Meleg, Edin

    CD3ζ-chain expression of human T lymphocytes is regulated by TNF via Src-like adaptor protein-dependent proteasomal degradation

    No full text
    Abstract Decreased expression of the TCR ζ-chain has been reported in several autoimmune, inflammatory, and malignant diseases, suggesting that ζ-chain downregulation is common at sites of chronic inflammation. Although ζ-chain is critically important in T lymphocyte activation, the mechanism of the decreased ζ-chain expression is less clear. Src-like adaptor protein (SLAP) is a master regulator of T cell activation; previous data have reported that SLAP regulates immunoreceptor signaling. We have examined the mechanism and the functional consequences of CD3 ζ-chain downregulation. TNF treatment of human T lymphocytes (15–40 ng/ml) selectively downregulates CD3 ζ-chain expression in a dose-dependent manner (p &amp;lt; 0.05) and decreases activation-induced IL-2 expression (p &amp;lt; 0.01). Although blocking of the lysosomal compartment fails to restore TNF-induced CD3 ζ-chain downregulation, inhibition of the proteasome prevented the effect of TNF. Both SLAP expression and the colocalization of SLAP with CD3 ζ-chain was enhanced by TNF treatment (p &amp;lt; 0.05 and p &amp;lt; 0.01, respectively), whereas TNF-induced ζ-chain downregulation was inhibited by gene silencing of SLAP with small interfering RNA. SLAP levels of the CD4+ T lymphocytes isolated from patients with rheumatoid arthritis were more than 2-fold higher than that of the healthy donors’ (p &amp;lt; 0.05); moreover, TNF treatment did not alter the SLAP expression of the CD4+ cells of anti-TNF therapy-treated patients. Our present data suggest that TNF modulates T cell activation during inflammatory processes by regulating the amount of CD3 ζ-chain expression via a SLAP-dependent mechanism. These data provide evidence for SLAP-dependent regulation of CD3 ζ-chain in the fine control of TCR signaling.</jats:p

    Proteoglycans: Systems-Level Insight into Their Expression in Healthy and Diseased Placentas

    No full text
    Proteoglycan macromolecules play key roles in several physiological processes (e.g., adhesion, proliferation, migration, invasion, angiogenesis, and apoptosis), all of which are important for placentation and healthy pregnancy. However, their precise roles in human reproduction have not been clarified. To fill this gap, herein, we provide an overview of the proteoglycans’ expression and role in the placenta, in trophoblast development, and in pregnancy complications (pre-eclampsia, fetal growth restriction), highlighting one of the most important members of this family, syndecan-1 (SDC1). Microarray data analysis showed that of 34 placentally expressed proteoglycans, SDC1 production is markedly the highest in the placenta and that SDC1 is the most upregulated gene during trophoblast differentiation into the syncytiotrophoblast. Furthermore, placental transcriptomic data identified dysregulated proteoglycan genes in pre-eclampsia and in fetal growth restriction, including SDC1, which is supported by the lower concentration of syndecan-1 in maternal blood in these syndromes. Overall, our clinical and in vitro studies, data analyses, and literature search pointed out that proteoglycans, as important components of the placenta, may regulate various stages of placental development and participate in the maintenance of a healthy pregnancy. Moreover, syndecan-1 may serve as a useful marker of syncytialization and a prognostic marker of adverse pregnancy outcomes. Further studies are warranted to explore the role of proteoglycans in healthy and complicated pregnancies, which may help in diagnostic or therapeutic developments

    New cholesterol-specific antibodies remodel HIV-1 target cells’ surface and inhibit their in vitro virus production

    Get PDF
    The importance of membrane rafts in HIV-1 infection is still in the focus of interest. Here, we report that new monoclonal anticholesterol IgG antibodies (ACHAs), recognizing clustered membrane cholesterol (e.g., in lipid rafts), rearrange the lateral molecular organization of HIV-1 receptors and coreceptors in the plasma membrane of HIV-1 permissive human T-cells and macrophages. This remodeling is accompanied with a substantial inhibition of their infection and HIV-1 production in vitro. ACHAs promote the association of CXCR4 with both CD4 and lipid rafts, consistent with the decreased lateral mobility of CXCR4, while Fab fragments of ACHAs do not show these effects. ACHAs do not directly mask the extracellular domains of either CD4 or CXCR4 nor do they affect CXCR4 internalization. No significant inhibition of HIV production is seen when the virus is preincubated with the antibodies prior to infection. Thus, we propose that the observed inhibition is mainly due to the membrane remodeling induced by cholesterol-specific antibodies on the target cells. This, in turn, may prevent the proper spatio-temporal juxtaposition of HIV-1 glycoproteins with CD4 and chemokine receptors, thus negatively interfering with virus attachment/entry
    corecore