6 research outputs found

    The contribution of macroalgae-associated fishes to small-scale tropical reef fisheries

    Get PDF
    Macroalgae-dominated reefs are a prominent habitat in tropical seascapes that support a diversity of fishes, including fishery target species. To what extent, then, do macroalgal habitats contribute to small-scale tropical reef fisheries? To address this question we: (1) Quantified the macroalgae-associated fish component in catches from 133 small-scale fisheries, (2) Compared life-history traits relevant to fishing (e.g. growth, longevity) in macroalgal and coral-associated fishes, (3) Examined how macroalgae-associated species can influence catch diversity, trophic level and vulnerability and (4) Explored how tropical fisheries change with the expansion of macroalgal habitats using a case study of fishery-independent data for Seychelles. Fish that utilised macroalgal habitats comprise 24% of the catch, but very few fished species relied entirely on macroalgal or coral habitats post-settlement. Macroalgal and coral-associated fishes had similar life-history traits, although vulnerability to fishing declined with increasing contribution of macroalgae association to the catch, whilst mean trophic level and diversity peaked when macroalgal-associated fish accounted for 20%-30% of catches. The Seychelles case study revealed similar total fish biomass on macroalgal and coral reefs, although the biomass of primary target species increased as macroalgae cover expanded. Our findings reinforce that multiple habitat types are needed to support tropical fishery stability and sustainability. Whilst coral habitats have been the focus of tropical fisheries management, we show the potential for macroalgae-associated fish to support catch size and diversity in ways that reduce vulnerability to overfishing. This is pertinent to seascapes where repeated disturbances are facilitating the replacement of coral reef with macroalgal habitats

    Cyclonic entrainment? The ichthyoplankton attributes of three major water mass types generated by the separation of the East Australian current

    No full text
    The relationship between larval fish assemblages and coastal oceanography is the basis for much of our understanding of connectivity and productivity of fish populations. Larval fish assemblages were sampled from the upper mixed layer (depth) at three prominent circulation features [separation of the East Australian Current (EAC), anticyclonic eddy, and cyclonic eddy] off the southeast Australian coast across three bathymetric zones (shelf, slope and ocean) for each feature. The separation of the EAC from the coast at ∼32°S was characterized by warmer, less saline water compared with the cyclonic and anticyclonic eddies further to the south (∼34 and ∼35°S, respectively), which were both characterized by cooler Tasman Sea water and greater fluorescence. The anticyclonic eddy had separated from the EAC three months prior to sampling, which facilitated the movement of a cyclonic eddy from the Tasman Sea westwards to the shelf at ∼34°S. The larval assemblage in the EAC had high numbers of fish of the families Labridae and Stomiidae. The cyclonic eddy was characterized by larval clupeids, carangids, scombrids and bothids, indicating recent entrainment of shelf waters and proximity to major spawning regions. In contrast, the anticyclonic eddy had fewer larval fish, with little evidence for entrainment of shelf assemblages into the near-surface waters. Myctophids were found in high abundance across all oceanographic features and bathymetric zones. The evidence of selective entrainment of coastal larval fish into the near-surface waters of a cyclonic eddy compared with a similar anticyclonic eddy indicates a potential offshore nursery ground

    The contribution of macroalgae‐associated fishes to small‐scale tropical reef fisheries

    Get PDF
    Macroalgae‐dominated reefs are a prominent habitat in tropical seascapes that support a diversity of fishes, including fishery target species. To what extent, then, do macroalgal habitats contribute to small‐scale tropical reef fisheries? To address this question we: (1) Quantified the macroalgae‐associated fish component in catches from 133 small‐scale fisheries, (2) Compared life‐history traits relevant to fishing (e.g. growth, longevity) in macroalgal and coral‐associated fishes, (3) Examined how macroalgae‐associated species can influence catch diversity, trophic level and vulnerability and (4) Explored how tropical fisheries change with the expansion of macroalgal habitats using a case study of fishery‐independent data for Seychelles. Fish that utilised macroalgal habitats comprise 24% of the catch, but very few fished species relied entirely on macroalgal or coral habitats post‐settlement. Macroalgal and coral‐associated fishes had similar life‐history traits, although vulnerability to fishing declined with increasing contribution of macroalgae association to the catch, whilst mean trophic level and diversity peaked when macroalgal‐associated fish accounted for 20%–30% of catches. The Seychelles case study revealed similar total fish biomass on macroalgal and coral reefs, although the biomass of primary target species increased as macroalgae cover expanded. Our findings reinforce that multiple habitat types are needed to support tropical fishery stability and sustainability. Whilst coral habitats have been the focus of tropical fisheries management, we show the potential for macroalgae‐associated fish to support catch size and diversity in ways that reduce vulnerability to overfishing. This is pertinent to seascapes where repeated disturbances are facilitating the replacement of coral reef with macroalgal habitats

    Macroalgal meadow habitats support fish and fisheries in diverse tropical seascapes

    No full text
    Canopy-forming macroalgae can construct extensive meadow habitats in tropical seascapes occupied by fishes that span a diversity of taxa, life-history stages and ecological roles. Our synthesis assessed whether these tropical macroalgal habitats have unique fish assemblages, provide fish nurseries and support local fisheries. We also applied a meta-analysis of independent surveys across 23 tropical reef locations in 11 countries to examine how macroalgal canopy condition is related to the abundance of macroalgal-associated fishes. Over 627 fish species were documented in tropical macroalgal meadows, with 218 of these taxa exhibiting higher local abundance within this habitat (cf. nearby coral reef) during at least one life-history stage. Major overlap (40%-43%) in local fish species richness among macroalgal and seagrass or coral reef habitats suggest macroalgal meadows may provide an important habitat refuge. Moreover, the prominence of juvenile fishes suggests macroalgal meadows facilitate the triphasic life cycle of many fishes occupying diverse tropical seascapes. Correlations between macroalgal canopy structure and juvenile abundance suggests macroalgal habitat condition can influence levels of replenishment in tropical fish populations, including the majority of macroalgal-associated fishes that are targeted by commercial, subsistence or recreational fisheries. While many macroalgal-associated fishery species are of minor commercial value, their local importance for food and livelihood security can be substantial (e.g. up to 60% of landings in Kenyan reef fisheries). Given that macroalgal canopy condition can vary substantially with sea temperature, there is a high likelihood that climate change will impact macroalgal-associated fish and fisheries

    The surgical safety checklist and patient outcomes after surgery: a prospective observational cohort study, systematic review and meta-analysis

    Get PDF
    © 2017 British Journal of Anaesthesia Background: The surgical safety checklist is widely used to improve the quality of perioperative care. However, clinicians continue to debate the clinical effectiveness of this tool. Methods: Prospective analysis of data from the International Surgical Outcomes Study (ISOS), an international observational study of elective in-patient surgery, accompanied by a systematic review and meta-analysis of published literature. The exposure was surgical safety checklist use. The primary outcome was in-hospital mortality and the secondary outcome was postoperative complications. In the ISOS cohort, a multivariable multi-level generalized linear model was used to test associations. To further contextualise these findings, we included the results from the ISOS cohort in a meta-analysis. Results are reported as odds ratios (OR) with 95% confidence intervals. Results: We included 44 814 patients from 497 hospitals in 27 countries in the ISOS analysis. There were 40 245 (89.8%) patients exposed to the checklist, whilst 7508 (16.8%) sustained ≥1 postoperative complications and 207 (0.5%) died before hospital discharge. Checklist exposure was associated with reduced mortality [odds ratio (OR) 0.49 (0.32–0.77); P\u3c0.01], but no difference in complication rates [OR 1.02 (0.88–1.19); P=0.75]. In a systematic review, we screened 3732 records and identified 11 eligible studies of 453 292 patients including the ISOS cohort. Checklist exposure was associated with both reduced postoperative mortality [OR 0.75 (0.62–0.92); P\u3c0.01; I2=87%] and reduced complication rates [OR 0.73 (0.61–0.88); P\u3c0.01; I2=89%). Conclusions: Patients exposed to a surgical safety checklist experience better postoperative outcomes, but this could simply reflect wider quality of care in hospitals where checklist use is routine
    corecore