33 research outputs found

    Porphyromonas gingivalis suppresses adaptive immunity in periodontitis, atherosclerosis and Alzheimer’s disease

    Get PDF
    Porphyromonas gingivalis, a keystone pathogen in chronic periodontitis, has been found to associate with remote body organ inflammatory pathologies including atherosclerosis and Alzheimer’s disease (AD). Although P. gingivalis has a plethora of virulence factors, much of its pathogenicity is surprisingly related to the overall immunosuppression of the host. This review focuses on P. gingivalis aiding suppression of the host’s adaptive immune system involving manipulation of cellular immunological responses specifically T- and B-cells in periodontitis and related conditions. In periodontitis this bacterium inhibits the synthesis of IL-2 and increases humoral responses. This reduces inflammatory responses related to T- and B-cell activation, and subsequent IFN-ɤ secretion by a subset of T cells. The T cells further suppresses upregulation of programmed cell death-1 (PD-1)-receptor on CD+-cells and its ligand PD-L1 on CD11b+- subset of T-cells. IL-2 down-regulates immune response-regulated genes, induces a cytokine pattern in which the Th17 lineage is favored thereby modulating the Th17/ T-regulatory cell (Treg) imbalance. The suppression of IFN-ɤ stimulated release of interferon-inducible protein-10 (IP-10) chemokine ligands [ITAC (CXCL11) and Mig (CXCL9)] by P. gingivalis capsular serotypes, triggers distinct T-cell responses, and contributes to local immune evasion by release of its outer membrane vesicles. In atherosclerosis P. gingivalis reduces Tregs and transforming growth factor beta-1 (TGF-1) and causes imbalance in the Th17 lineage of the Treg population. In Alzheimer’s disease P. gingivalis may affect the blood-brain barrier permeability, and inhibit local IFN-ɤ response by preventing entry of immune cells into the brain. The scarcity of adaptive immune cells in Alzheimer’s disease neuropathology implies P. gingivalis infection of the brain likely causes impaired clearance of insoluble amyloid and induces immunosuppression. By the effective manipulation of the armory of adaptive immune suppression through a plethora of virulence factors P. gingivalis may act as a keystone organism in periodontitis and in related systemic diseases and other remote body inflammatory pathologies

    A genetic locus and gene expression patterns associated with the priming effect on lettuce seed germination at elevated temperatures

    Get PDF
    Seeds of most cultivated varieties of lettuce (Lactuca sativa L.) fail to germinate at warm temperatures (i.e., above 25–30°C). Seed priming (controlled hydration followed by drying) alleviates this thermoinhibition by increasing the maximum germination temperature. We conducted a quantitative trait locus (QTL) analysis of seed germination responses to priming using a recombinant inbred line (RIL) population derived from a cross between L. sativa cv. Salinas and L. serriola accession UC96US23. Priming significantly increased the maximum germination temperature of the RIL population, and a single major QTL was responsible for 47% of the phenotypic variation due to priming. This QTL collocated with Htg6.1, a major QTL from UC96US23 associated with high temperature germination capacity. Seeds of three near-isogenic lines (NILs) carrying an Htg6.1 introgression from UC96US23 in a Salinas genetic background exhibited synergistic increases in maximum germination temperature in response to priming. LsNCED4, a gene encoding a key enzyme (9-cis-epoxycarotinoid dioxygenase) in the abscisic acid biosynthetic pathway, maps precisely with Htg6.1. Expression of LsNCED4 after imbibition for 24 h at high temperature was greater in non-primed seeds of Salinas, of a second cultivar (Titan) and of NILs containing Htg6.1 compared to primed seeds of the same genotypes. In contrast, expression of genes encoding regulated enzymes in the gibberellin and ethylene biosynthetic pathways (LsGA3ox1 and LsACS1, respectively) was enhanced by priming and suppressed by imbibition at elevated temperatures. Developmental and temperature regulation of hormonal biosynthetic pathways is associated with seed priming effects on germination temperature sensitivity

    The Effect of Iron Limitation on the Transcriptome and Proteome of Pseudomonas fluorescens Pf-5

    Get PDF
    One of the most important micronutrients for bacterial growth is iron, whose bioavailability in soil is limited. Consequently, rhizospheric bacteria such as Pseudomonas fluorescens employ a range of mechanisms to acquire or compete for iron. We investigated the transcriptomic and proteomic effects of iron limitation on P. fluorescens Pf-5 by employing microarray and iTRAQ techniques, respectively. Analysis of this data revealed that genes encoding functions related to iron homeostasis, including pyoverdine and enantio-pyochelin biosynthesis, a number of TonB-dependent receptor systems, as well as some inner-membrane transporters, were significantly up-regulated in response to iron limitation. Transcription of a ribosomal protein L36-encoding gene was also highly up-regulated during iron limitation. Certain genes or proteins involved in biosynthesis of secondary metabolites such as 2,4-diacetylphloroglucinol (DAPG), orfamide A and pyrrolnitrin, as well as a chitinase, were over-expressed under iron-limited conditions. In contrast, we observed that expression of genes involved in hydrogen cyanide production and flagellar biosynthesis were down-regulated in an iron-depleted culture medium. Phenotypic tests revealed that Pf-5 had reduced swarming motility on semi-solid agar in response to iron limitation. Comparison of the transcriptomic data with the proteomic data suggested that iron acquisition is regulated at both the transcriptional and post-transcriptional levels

    Stratification Requirements for Seed Dormancy Alleviation in a Wetland Weed

    Get PDF
    Echinochloaoryzicola(syn.E. phyllopogon) is an exotic weed of California rice paddies that has evolved resistance to multiple herbicides. Elimination of seedlingsthroughcertain weed control methods can limit the spread of this weed, but is contingent on accurate predictions of germination and emergence timing, which are influenced by seed dormancy levels.In summer annuals, dormancy can often be relieved through stratification, a period of prolonged exposure to cold and moist conditions.We used population-based threshold models to quantify the effects of stratification on seed germination of four E. Oryzicola populations at a range of water potential (Ψ) and oxygen levels. We also determined how stratification temperatures, moisture levels and durations contributed to dormancy release. Stratification released dormancy by decreasing base Ψ and hydrotimerequired for germination and by eliminating any germination sensitivity to oxygen. Stratification also increased average germination rates (GR), which were used as a proxy for relative dormancy levels. Alternating temperatures nearly doubled GR in all populations, indicating that seeds could be partially dormant despite achieving high final germination percentages. Stratification at Ψ = 0 MPa increased GR compared to stratification at lower water potentials, demonstrating that Ψ contributed to regulating dormancy release. Maximum GR occurred after 2-4 weeks of stratification at 0 MPa; GR were often more rapid for herbicide-resistant than for herbicide-susceptible seeds, implying greater dormancy in the latter. Manipulation of field conditions to promote dormancy alleviation of E. oryzicola seeds might improve the rate and uniformity of germination for seed bank depletion through seedling weed control. Our results suggest field soil saturation in winter would contribute towards E. oryzicola dormancy release and decrease the time to seedling emergence

    Gasotransmission of Nitric Oxide (NO) at early plant developmental stages

    No full text
    The versatility of nitric oxide (NO) as a free radical that mediates numerous biological functions within early plant development is widely accepted. NO action in seed germination and root developmental processes involves a complex signaling pathway that includes the cellular redox levels, the posttranslational modification of specific proteins by S-nitrosylation, and the interaction with other plant growth regulators (i.e., phytohormones) using similar molecular components. Recent evidence indicates that changing levels of this reactive nitrogen species (NO) may also fine-tune the molecular mechanisms by which NO leads to changes in seed germination and root growth. This chapter briefly introduces the key processes for the NO transmission during seed germination and root development and focuses on the sensing mechanisms underlying the effects of NO and its interaction with other plant hormones linking these changes

    Dimorphic cypsela germination and plant growth in Synedrella nodiflora (L.) Gaertn. (Asteraceae)

    No full text
    Synedrella nodiflora is a weed species that has dimorphic cypselas: winged peripheral and lanceolate shaped central. The aim of this work is to describe the reproductive capability by measuring dimorphic cypselas morphology, imbibition rates and germinative patterns under temperature, light quality and water availability gradients, and compare the plant growth between two light treatments. The central cypselas were lighter, longer and its pappi were more elongated than the peripheral ones, favoring its dispersion. Neither type had deep dormancy and both of them germinated with the same pattern under the optimum conditions. Both cypselas showed higher germinability in temperatures between 25 and 30 °C, under white light and high water availability, although there are some differences between the types, mainly at dark treatments. Plants grown in direct sunlight accumulated more biomass, allowing for higher plant development and inflorescence production, although shaded light plants capitulum had a higher central: peripheral ratio than the direct sunlight treatment. S. nodiflora cypselas germinate better in unfiltered light places, although the plants are adapted to shady conditions. The species showed high germination potential over a wide range of environmental conditions, as well as fast plant development. All of these features favor distribution in environmental sites

    An iron detection system determines bacterial swarming initiation and biofilm formation

    Get PDF
    Iron availability affects swarming and biofilm formation in various bacterial species. However, how bacteria sense iron and coordinate swarming and biofilm formation remains unclear. Using Serratia marcescens as a model organism, we identify here a stage-specific iron-regulatory machinery comprising a two-component system (TCS) and the TCS-regulated iron chelator 2-isocyano-6,7-dihydroxycoumarin (ICDH-Coumarin) that directly senses and modulates environmental ferric iron (Fe(3+)) availability to determine swarming initiation and biofilm formation. We demonstrate that the two-component system RssA-RssB (RssAB) directly senses environmental ferric iron (Fe(3+)) and transcriptionally modulates biosynthesis of flagella and the iron chelator ICDH-Coumarin whose production requires the pvc cluster. Addition of Fe(3+), or loss of ICDH-Coumarin due to pvc deletion results in prolonged RssAB signaling activation, leading to delayed swarming initiation and increased biofilm formation. We further show that ICDH-Coumarin is able to chelate Fe(3+) to switch off RssAB signaling, triggering swarming initiation and biofilm reduction. Our findings reveal a novel cellular system that senses iron levels to regulate bacterial surface lifestyle
    corecore