3,045 research outputs found

    Structured Deformations of Continua: Theory and Applications

    Full text link
    The scope of this contribution is to present an overview of the theory of structured deformations of continua, together with some applications. Structured deformations aim at being a unified theory in which elastic and plastic behaviours, as well as fractures and defects can be described in a single setting. Since its introduction in the scientific community of rational mechanicists (Del Piero-Owen, ARMA 1993), the theory has been put in the framework of variational calculus (Choksi-Fonseca, ARMA 1997), thus allowing for solution of problems via energy minimization. Some background, three problems and a discussion on future directions are presented.Comment: 11 pages, 1 figure, 1 diagram. Submitted to the Proceedings volume of the conference CoMFoS1

    Unit testing methods for Internet of Things Mbed OS operating system

    Get PDF
    Abstract. Embedded operating systems for Internet of Things are responsible for managing hardware and software in these systems. From the vast number of IoT operating system projects available, some projects are backed by large companies or institutes and some are developed completely by the open source community. IoT operating system testing focuses on the key features of IoT such as networking and limited resources. In this thesis, problems in Mbed OS operating system testing methods are identified and a unit testing solution is implemented. The implemented unit testing framework allows developers to write and run unit tests. The framework is also integrated into Mbed OS continuous integration to increase test coverage. This thesis shows how functional testing and unit testing are the most common types of testing in open source embedded operating system projects. Mbed OS unit testing framework results shows how running tests on PC platforms is faster than running tests on IoT devices. This framework also enables developers to write unit tests more freely and improve Mbed OS development process. The implemented unit testing framework solved issues in Mbed OS testing but more in depth research is needed to improve testing methods further.Yksikkötestausmenetelmät esineiden internet Mbed OS käyttöjärjestelmälle. Tiivistelmä. Esineiden internettiin tarkoitetut sulautetut käyttöjärjestelmät ovat tarvittavia laitteiston ja sovellusten hallintaan IoT järjestelmissä. Saatavilla olevien IoT käyttöjärjestelmien joukosta osa on suurten yritysten tai instituutioiden tukemia, ja osa on täysin vapaan lähdekoodin yhteisön kehittämiä. IoT käyttöjärjestelmän testaus keskittyy esineiden internetin avainominaisuuksiin kuten verkkotietoliikenteeseen ja rajallisiin resursseihin. Työssä tunnistetaan Mbed OS käyttöjärjestelmän testausmenetelmien ongelmia ja kehitetään yksikkötestaustyökalu. Kehitetty yksikkötestausympäristö mahdollistaa kehittäjille yksikkötestien kirjoittamisen ja ajamisen. Testaustyökalu yhdistetään myös Mbed OS jatkuvan integraation prosessiin testauskattavuuden parantamiseksi. Työssä katsotaan kuinka funktionaaliset testit ja yksikkötestit ovat yleisimmät testityypit avoimen lähdekoodin sulautetuissa käyttöjärjestelmäprojekteissa. Mbed OS yksikkötestaustyökalu näyttää kuinka testien ajaminen PC ympäristössä on nopeampaa kuin IoT laitteissa. Tämä työkalu myös mahdollistaa kehittäjien kirjoittaa yksikkötestejä vapaammin ja siten parantaa kehitysprosessia. Kehitetty yksikkötestaustyökalu ratkaisi Mbed OS testauksen ongelmia, mutta syventävää tutkimusta tarvitaan enemmän testausmenetelmien parantamiseksi edelleen

    Feasibility of diffusion and probabilistic white matter analysis in patients implanted with a deep brain stimulator.

    Get PDF
    Deep brain stimulation (DBS) for Parkinson\u27s disease (PD) is an established advanced therapy that produces therapeutic effects through high frequency stimulation. Although this therapeutic option leads to improved clinical outcomes, the mechanisms of the underlying efficacy of this treatment are not well understood. Therefore, investigation of DBS and its postoperative effects on brain architecture is of great interest. Diffusion weighted imaging (DWI) is an advanced imaging technique, which has the ability to estimate the structure of white matter fibers; however, clinical application of DWI after DBS implantation is challenging due to the strong susceptibility artifacts caused by implanted devices. This study aims to evaluate the feasibility of generating meaningful white matter reconstructions after DBS implantation; and to subsequently quantify the degree to which these tracts are affected by post-operative device-related artifacts. DWI was safely performed before and after implanting electrodes for DBS in 9 PD patients. Differences within each subject between pre- and post-implantation FA, MD, and RD values for 123 regions of interest (ROIs) were calculated. While differences were noted globally, they were larger in regions directly affected by the artifact. White matter tracts were generated from each ROI with probabilistic tractography, revealing significant differences in the reconstruction of several white matter structures after DBS. Tracts pertinent to PD, such as regions of the substantia nigra and nigrostriatal tracts, were largely unaffected. The aim of this study was to demonstrate the feasibility and clinical applicability of acquiring and processing DWI post-operatively in PD patients after DBS implantation. The presence of global differences provides an impetus for acquiring DWI shortly after implantation to establish a new baseline against which longitudinal changes in brain connectivity in DBS patients can be compared. Understanding that post-operative fiber tracking in patients is feasible on a clinically-relevant scale has significant implications for increasing our current understanding of the pathophysiology of movement disorders, and may provide insights into better defining the pathophysiology and therapeutic effects of DBS

    Lensing effect on polarization in microwave background: extracting convergence power spectrum

    Full text link
    Matter inhomogeneities along the line of sight deflect the cosmic microwave background (CMB) photons originating at the last scattering surface at redshift z1100z \sim 1100. These distortions modify the pattern of CMB polarization. We identify specific combinations of Stokes QQ and UU parameters that correspond to spin 0,±2\pm 2 variables and can be used to reconstruct the projected matter density. We compute the expected signal to noise as a function of detector sensitivity and angular resolution. With Planck satellite the detection would be at a few σ\sigma level. Several times better detector sensitivity would be needed to measure the projected dark matter power spectrum over a wider range of scales, which could provide an independent confirmation of the projected matter power spectrum as measured from other methods.Comment: 17 pages, 5 figures, accepted for publication in PR

    Shifts in Growth Responses to Climate and Exceeded Drought-Vulnerability Thresholds Characterize Dieback in Two Mediterranean Deciduous Oaks

    Get PDF
    Drought stress has induced dieback episodes affecting many forest types and tree species worldwide. However, there is scarce information regarding drought-triggered growth decline and canopy dieback in Mediterranean deciduous oaks. These species face summer drought but have to form new foliage every spring which can make them vulnerable to hotter and drier conditions during that season. Here, we investigated two stands dominated byQuercus frainettoTen. andQuercus canariensisWilld. and situated in southern Italy and Spain, respectively, showing drought-induced dieback since the 2000s. We analyzed how radial growth and its responses to climate differed between non-declining (ND) and declining (D) trees, showing different crown defoliation and coexisting in each stand by: (i) characterizing growth variability and its responsiveness to climate and drought through time, and (ii) simulating growth responses to soil moisture and temperature thresholds using the Vaganov-Shashkin VS-lite model. Our results show how growth responsiveness to climate and drought was higher in D trees for both oak species. Growth has become increasingly limited by warmer-drier climate and decreasing soil moisture availability since the 1990s. These conditions preceded growth drops in D trees indicating they were more vulnerable to warming and aridification trends. Extremely warm and dry conditions during the early growing season trigger dieback. Changes in the seasonal timing of water limitations caused contrasting effects on long-term growth trends of D trees after the 1980s inQ. frainettoand during the 1990s inQ. canariensis. Using growth models allows identifying early-warning signals of vulnerability, which can be compared with shifts in the growth responses to warmer and drier conditions. Our approach facilitates establishing drought-vulnerability thresholds by combining growth models with field records of dieback

    Early antenatal prediction of gestational diabetes in obese women: development of prediction tools for targeted intervention

    Get PDF
    All obese women are categorised as being of equally high risk of gestational diabetes (GDM) whereas the majority do not develop the disorder. Lifestyle and pharmacological interventions in unselected obese pregnant women have been unsuccessful in preventing GDM. Our aim was to develop a prediction tool for early identification of obese women at high risk of GDM to facilitate targeted interventions in those most likely to benefit. Clinical and anthropometric data and non-fasting blood samples were obtained at 15+0–18+6 weeks’ gestation in 1303 obese pregnant women from UPBEAT, a randomised controlled trial of a behavioural intervention. Twenty one candidate biomarkers associated with insulin resistance, and a targeted nuclear magnetic resonance (NMR) metabolome were measured. Prediction models were constructed using stepwise logistic regression. Twenty six percent of women (n = 337) developed GDM (International Association of Diabetes and Pregnancy Study Groups criteria). A model based on clinical and anthropometric variables (age, previous GDM, family history of type 2 diabetes, systolic blood pressure, sum of skinfold thicknesses, waist:height and neck:thigh ratios) provided an area under the curve of 0.71 (95%CI 0.68–0.74). This increased to 0.77 (95%CI 0.73–0.80) with addition of candidate biomarkers (random glucose, haemoglobin A1c (HbA1c), fructosamine, adiponectin, sex hormone binding globulin, triglycerides), but was not improved by addition of NMR metabolites (0.77; 95%CI 0.74–0.81). Clinically translatable models for GDM prediction including readily measurable variables e.g. mid-arm circumference, age, systolic blood pressure, HbA1c and adiponectin are described. Using a ≥35% risk threshold, all models identified a group of high risk obese women of whom approximately 50% (positive predictive value) later developed GDM, with a negative predictive value of 80%. Tools for early pregnancy identification of obese women at risk of GDM are described which could enable targeted interventions for GDM prevention in women who will benefit the most

    Gravitational Potential Energy in Iberia: A Driver of Active Deformation in High‐Topography Regions

    Get PDF
    In this study, we present a new estimation of the gravitational potential energy (GPE) in Iberia and use numerical modeling to evaluate its relative contribution to the present‐day stress field and deformation. We also present an improved (larger time span and denser coverage) compilation of Global Navigation Satellite System velocities, which we use to compute the strain rate field of Iberia. We take advantage of recent neotectonic modeling developed for Iberia and northwest Africa to study the isolated dynamic contribution of GPE‐related stresses. We present two models—one including only the stress generated by GPE and another reproducing the net stress field—and compare their predictions with the most up‐to‐date compilations of stress indicators, hypocenter clusters, and geodetic strain rates. The main effect of GPE is to induce second‐order spatial variations in the stress field. GPE appears to play an important role in high‐topography regions, where it explains deviatoric stress patterns mainly associated with extensional regimes. In north Iberia, especially in the Pyrenees and Cantabria, GPE causes an extensional regime over the highest peaks. In the Iberian Chain and eastern Betics, GPE is in agreement with the observed extensional deformation. Normal focal mechanisms of shallow earthquake clusters appear to be related with GPE maxima and GPE‐induced extensional regimes. Wavelength analysis suggests that both GPE and the long‐wavelength topography of intraplate Iberia record the plate boundary forces that acted in Iberia during the Alpine orogeny at Eocene to lower Miocene times

    The Impact of Temperature Fluctuations on the Lyman-alpha Forest Power Spectrum

    Full text link
    We explore the impact of spatial fluctuations in the intergalactic medium temperature on the Lyman-alpha forest flux power spectrum near z ~ 3. We develop a semianalytic model to examine temperature fluctuations resulting from inhomogeneous HI and incomplete HeII reionizations. Detection of these fluctuations might provide insight into the reionization histories of hydrogen and helium. Furthermore, these fluctuations, neglected in previous analyses, could bias constraints on cosmological parameters from the Lyman-alpha forest. We find that the temperature fluctuations resulting from inhomogeneous HI reionization are likely to be very small, with an rms amplitude of < 5%, σT0/<0.05\sigma_{T_0}/ < 0.05. More important are the temperature fluctuations that arise from incomplete HeII reionization, which might plausibly be as large as 50%, σT0/ 0.5\sigma_{T_0}/ ~ 0.5. In practice, however, these temperature fluctuations have only a small effect on flux power spectrum predictions. The smallness of the effect is possibly due to density fluctuations dominating over temperature fluctuations on the scales probed by current measurements. On the largest scales currently probed, k ~ 0.001 s/km (~0.1 h/Mpc), the effect on the flux power spectrum may be as large as ~10% in extreme models. The effect is larger on small scales, up to ~20% at k = 0.1 s/km, due to thermal broadening. Our results suggest that the omission of temperature fluctuations effects from previous analyses does not significantly bias constraints on cosmological parameters.Comment: 11 pages, 5 figures, ApJ accepte
    corecore