
FACULTY OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING

Lari-Matias Orjala

UNIT TESTING METHODS FOR
INTERNET OF THINGS MBED OS

OPERATING SYSTEM

Master’s Thesis
Degree Programme in Computer Science and Engineering

December 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Oulu Repository - Jultika

https://core.ac.uk/display/344908757?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Orjala L. (2019) Unit testing methods for Internet of Things Mbed
OS operating system. University of Oulu, Degree Programme in Computer
Science and Engineering, 40 p.

ABSTRACT

Embedded operating systems for Internet of Things are responsible
for managing hardware and software in these systems. From the
vast number of IoT operating system projects available, some projects
are backed by large companies or institutes and some are developed
completely by the open source community. IoT operating system
testing focuses on the key features of IoT such as networking and
limited resources.
In this thesis, problems in Mbed OS operating system testing

methods are identified and a unit testing solution is implemented. The
implemented unit testing framework allows developers to write and run
unit tests. The framework is also integrated into Mbed OS continuous
integration to increase test coverage.
This thesis shows how functional testing and unit testing are the most

common types of testing in open source embedded operating system
projects. Mbed OS unit testing framework results shows how running
tests on PC platforms is faster than running tests on IoT devices. This
framework also enables developers to write unit tests more freely and
improve Mbed OS development process.
The implemented unit testing framework solved issues in Mbed

OS testing but more in depth research is needed to improve testing
methods further.

Keywords: IoT, Open source, Unit testing, Functional testing,
Regression testing, Continuous integration

Orjala L. (2019) Yksikkötestausmenetelmät esineiden internet Mbed
OS käyttöjärjestelmälle. Oulun yliopisto, Tietotekniikan tutkinto-ohjelma,
40 s.

TIIVISTELMÄ

Esineiden internettiin tarkoitetut sulautetut käyttöjärjestelmät ovat
tarvittavia laitteiston ja sovellusten hallintaan IoT järjestelmissä.
Saatavilla olevien IoT käyttöjärjestelmien joukosta osa on
suurten yritysten tai instituutioiden tukemia, ja osa on täysin
vapaan lähdekoodin yhteisön kehittämiä. IoT käyttöjärjestelmän
testaus keskittyy esineiden internetin avainominaisuuksiin kuten
verkkotietoliikenteeseen ja rajallisiin resursseihin.
Työssä tunnistetaan Mbed OS käyttöjärjestelmän

testausmenetelmien ongelmia ja kehitetään yksikkötestaustyökalu.
Kehitetty yksikkötestausympäristö mahdollistaa kehittäjille
yksikkötestien kirjoittamisen ja ajamisen. Testaustyökalu yhdistetään
myös Mbed OS jatkuvan integraation prosessiin testauskattavuuden
parantamiseksi.
Työssä katsotaan kuinka funktionaaliset testit ja yksikkötestit

ovat yleisimmät testityypit avoimen lähdekoodin sulautetuissa
käyttöjärjestelmäprojekteissa. Mbed OS yksikkötestaustyökalu
näyttää kuinka testien ajaminen PC ympäristössä on nopeampaa kuin
IoT laitteissa. Tämä työkalu myös mahdollistaa kehittäjien kirjoittaa
yksikkötestejä vapaammin ja siten parantaa kehitysprosessia.
Kehitetty yksikkötestaustyökalu ratkaisi Mbed OS testauksen

ongelmia, mutta syventävää tutkimusta tarvitaan enemmän
testausmenetelmien parantamiseksi edelleen.

Avainsanat: IoT, avoin lähdekoodi, yksikkötestaus, funktionaalinen
testaus, regressiotestaus, jatkuva integraatio

TABLE OF CONTENTS

ABSTRACT
TIIVISTELMÄ
TABLE OF CONTENTS
FOREWORD
LIST OF ABBREVIATIONS AND SYMBOLS
1. INTRODUCTION 7
2. BACKGROUND 8

2.1. Internet of Things operating systems . 8
2.2. Testing of open source software . 9

2.2.1. Testing approach . 9
2.2.2. Test environments . 11
2.2.3. Test automation and continuous integration 12
2.2.4. Unit testing frameworks. 14
2.2.5. Evaluation of testing methods . 15

2.3. Open-source operating system projects . 18
3. DESIGN OF UNIT TESTING 22

3.1. Identifying problems in Mbed OS testing methods. 22
3.2. Solutions to Mbed OS testing. 23
3.3. Requirements. 23
3.4. Unit testing framework . 24
3.5. Building tests with CLI . 25
3.6. Mbed OS CI integration. 27

4. EVALUATION 28
4.1. Acceptance and portability tests . 28
4.2. Performance tests . 29
4.3. Unit tests . 30
4.4. Effectiveness analysis . 31

5. DISCUSSION 33
6. CONCLUSION 34

6.1. Achievements. 34
6.2. Limitations . 34
6.3. Future Work . 34

7. REFERENCES 36
8. APPENDICES 38

FOREWORD

This thesis is based on the work I did at Arm. I would like to thank my supervisors
Dr tech. Susanna Pirttikangas and Dr tech. Teemu Leppänen for instructions
during the writing period. Olli-Pekka Puolitaval acted as the technical supervisor
for this thesis at Arm. He also helped with the scope and the focus of this thesis.
I also want to thank my family. They have been very supporting of me during
this process.

Oulu, 12th December, 2019

Lari-Matias Orjala

LIST OF ABBREVIATIONS AND SYMBOLS

API Application Programming Interface
AWS Amazon Web Services
BSP Board support package
C Programming language
C++ Programming language
CD Continuous delivery
CI Continuous integration
CLI Command line interface
CPU Central Processing Unit
FVP Fixed virtual platform
Greentea Mbed test automation tool
GUI Graphical user interface
HTML Hypertext Markup Language
IoT Internet of Things
MCU Microcontroller unit
PC Personal computer
PR Pull Request
OAT Operational acceptance testing
OS Operating system
RTOS Real-time operating system
UAT User acceptance testing
XML Extensible Markup Language

7

1. INTRODUCTION

Internet of Things (IoT) means autonomous machines which are communicating
with each other. It is estimated that by 2020 there would be around 30 billion
connected devices [1]. The definition has been changing over the years since
new applications have emerged which do not fit the original definition [2]. IoT
applications such as smart homes and buildings, wearables, connected cars and
smart cities projects among others are developed and deployed all around the
world. The IoT market grows every day and more is invested in trying to find new
leading applications for the consumer, commercial, industrial and infrastructure
spaces.
Internet of Things applications have many requirements. The applications have

to support various connectivity technologies, establish high security features and
keep low power consumption. Devices can range from small microcontroller units
(MCU) to high-performance systems so the software must be modular enough to
be used by different systems with different amount of memory.
The operating system sits between the physical hardware layer and the

application layer. It is used to manage hardware and software of the system.
It provides an abstraction layer for the hardware it runs on so applications can
utilize those resources. IoT operating systems are embedded operating systems
for IoT applications. IoT operating system provides all the resources needed to
run these applications. IoT operating systems focus on providing features such as
security, the support of various connectivity technologies, small memory footprint
and low power consumption.
There is a number of IoT operating system projects available and in active

development. Some projects are backed by large companies or institutes and
some are developed completely by the open source community. Closed source or
commercial operating systems are found in systems where reliability and safety
are expected and where professional support is needed. Open-source operating
system projects have gained a lot of interest over the years because of free licensing
models and active community support.
Open-source IoT operating system projects need to have a proper testing

process in place in order to maintain quality. The testing of IoT operating
systems share many challenges with the testing of any embedded system where
the software is run in constrained hardware environment. This thesis explores
the testing methods of multiple state-of-the-art open-source IoT operating system
projects.
The goal of this thesis is to improve the testing methods of Mbed OS by

implementing a unit testing framework for Mbed OS development and into Mbed
OS continuous integration pipeline. This work was done for Arm which is
why Mbed OS was selected. Mbed OS targets devices using Arm Cortex-M
microprocessor core architectures which is why similar operating system projects
targeting low-end devices with Cortex-M cores were selected for comparison.

8

2. BACKGROUND

IoT applications are software applications which are running on IoT devices.
There can be many different kinds of IoT applications. Atzori et. al. present three
different visions of IoT: Internet oriented, Things oriented and Semantic
oriented perspectives [3]. Internet oriented vision focuses on networks of
uniquely identifiable devices. Things oriented vision focuses on the device
and different technologies which allow the devices to communicated with each
other. Semantic oriented vision is the last perspective which tries to solve issues
of representing, storing and organizing of information generated by the IoT.
Applications can emphasize different visions which is why requirements can be
different between different applications.
An embedded operating system is needed for IoT applications in order to

run the software application on the IoT device. The applications have to work
correctly so the quality of the operating system is important. Software testing is
a process of evaluating the quality of the system. This process is not different for
embedded operating systems for IoT. The testing of IoT operating systems follows
the basic principles of testing any software system. The testing can happen in
many forms during the software development process but proper testing process
is a key to a quality product.

2.1. Internet of Things operating systems

An operating system is software which manages hardware components and allows
the running of applications which utilize mentioned hardware and other system
resources. The operating systems consist of components which are needed to
run applications. The most important component is the kernel. Kernel is the
core of an operating system and it is used to manage resources, memory and the
hardware devices of the system. Kernel runs in a protected space of the system
called kernel memory and it handles system calls from the software applications
running in the user space and translates them into the instructions for the central
processing unit (CPU).
Scheduler is used to decide which process can be running at the time. There

are three types of schedulers: long-term, medium-term and short-term schedulers.
The long-term scheduler selects which process is admitted into main memory and
therefore for processing. The medium-term scheduler is used to temporarily swap
processes out of main memory and into secondary memory or vice versa depending
on the scheduling strategy. Medium-term scheduling helps to move inactive or
blocking processes out of the memory to free up memory for other processes.
Finally, the short-term scheduler is used to selecting which process is executed
next and by which CPU.
Scheduling allows computer multitasking which means running multiple tasks

over a certain period of time using a single CPU. Scheduling strategy for
multitasking determines what type of operating system it is. Cooperative
multitasking also known as non-preemptive multitasking is a multitasking
strategy where the system does not perform context switching but the processes

9

themselves must allow other processes to run eventually. Preemptive
multitasking is a strategy where the system can suspend the running process
for other processes. This allows all processes to get some CPU time and handle
process scheduling using the system scheduler. Real-time operating system
(RTOS) is a operating system where the scheduling and execution time of the
processes is guaranteed. This means the system is under time constraints and
must execute processes preemptively using event priority or time-sharing. Event
priority scheduling means higher priority events are executed first. Time-sharing
scheduling means a period of execution time is allocated for each process by the
scheduler.
Operating system often provides additional features such as device drivers

which are used for allowing the operating system communicate with the hardware,
file systems which allows data to be stored in files, and networking solutions which
allow the applications to communicate with other applications and Internet.
IoT operating systems are embedded operating systems, which target IoT

hardware. Embedded operating systems are operating systems which are designed
to be efficient of available resources and reliable. IoT operating systems are often
real-time operating systems since IoT applications require critical management
of hardware and application resources under strict time constraints [4].

2.2. Testing of open source software

Testing is a process of validating the quality of the software and the code written
for that software. Myers et. al. say that “software testing is a process, or a series
of processes, designed to make sure computer code does what it was designed to
do and, conversely, that it does not do anything unintended” which supports this
idea that software testing is needed to make sure the code is working [5]. There
are different approaches to testing IoT operating system code and different test
environments to run tests.

2.2.1. Testing approach

Different software testing strategies give different results, and therefore it is
important to choose proper testing methods for software validation and the
development process. Testing approaches are often divided into passive and active
testing.
Passive testing is a testing approach where the system is tested without actively

interacting with it. Passive testing consists of system monitoring, the analysis of
past test results and the analysis of logs.
Active testing is the testing approach where software is tested before each

release. Test data is acquired from these tests and analysed. Active testing can be
static or dynamic. Static testing means no test cases are executed. Static testing
consists of static code analysis, reviews, walkthroughs and inspections where the
goal is to find defects and errors as early as possible in the development process.

10

Dynamic testing means running test cases against the system. The size or
complexity of the testable unit determines the level of dynamic testing. The
common levels of testing are unit testing, integration testing and system testing.
Testing is called unit testing when testing is done against the smallest unit of
code such as single function. Each unit test tests only that single independent
unit of code and communication between other units is often done by mocking
or stubbing all external dependencies. Integration testing is when external
dependencies are included in the tests and the interfaces between the system
components are verified. Testing is defined as system testing when the complete
system is verified against the product requirements. Figure 1 shows a testing
pyramid by Mike Cohn [6]. The testing pyramid shows the relation between unit
tests, integration tests and system tests. Tests higher in the pyramid require more
integration and are slower to execute. In practice this means writing tests with
different granularity and having fewer high-level tests [7]. High-level tests are tests
which test the whole system instead of particular components. Acceptance testing
is often included as the final level of testing. Acceptance testing can either be
user acceptance testing (UAT) or operational acceptance testing (OAT). In user
acceptance testing, the system is verified against user-defined test cases in real-
world scenarios. Operational acceptance testing is the evaluation of operational
readiness of the system.

Figure 1. Testing pyramid

The approach to testing can also be exploratory or scripted. Exploratory
testing combines designing and running tests with learning aspect so the tester
can try different solutions in order to find as many problems in the system as
possible. In scripted testing the tester follows the documented process of testing
steps. This means the testing process is predefined and systematic.
Traditionally testing methods are separated into either white box or black box

testing. White box testing means that the internal structures of the systems are
used in the testing process. White box testing techniques are methods such as

11

API testing and code coverage. Black box testing is done from the perspective
of an end user. In the black box testing, the internal structures of the system
are unknown. The system accepts inputs and gives an output result. Gray box
testing is a middle-ground between the two. In the gray box testing the tester
has limited knowledge of the system.
The testing of IoT software focuses on specific features such as security,

networking, device and platforms. The following types of testing are commonly
used to test IoT software around specific features [8]:

• Usability testing
• Compatibility testing
• Reliability and scalability testing
• Data integrity testing
• Security testing
• Performance testing

Usability tests evaluate how the system works for different users. Different users
require different features for the system so it is important to evaluate the system
against particular use cases. Compatibility tests evaluate how different devices
with the different hardware configurations can be connected using the IoT system.
There are lots of IoT devices with different strengths and weaknesses so choosing
the optimal device requires compatibility testing, Reliability and scalability
tests focus on network and sensor performance. These tests are important for
measuring how well the system scales for a large number of network devices. Data
integrity testing evaluates how large amount of data, the application and the file
system work with each other. IoT systems often transmit large amount of data
and that data needs to be stored properly so ensuring that the data is accurate
and consistent is important. Security tests work with data privacy controls and
user or device authentication. Maintaining high security for data privacy and
device or user identification reasons is essential. Finally, the performance testing
which evaluates the performance of the IoT system. This means testing how well
the system performs the tasks it was designed for.
Regression testing is a testing method where the tests are re-run to ensure

that the software is working after changing the code. Regression tests are often
functional and non-functional tests.

2.2.2. Test environments

IoT operating systems target specific hardware with limited resources. The
modules and components of the operating system need to be tested on the actual
IoT device to verify everything is working correctly. Testing only on the hardware
is very costly and time-consuming. Tests need to be build for the specific hardware
and executed in that environment. This is often near impossible especially in
continuous integration (CI). There are however operating system modules which
can be tested outside the hardware. Choosing correct tests to run on correct
platform or test environment is essential in CI.

12

Testing on the actual IoT device is the most natural method of testing IoT
operating system. Tests executed on the hardware verify that all aspects of the
operating system work as expected. It is common to find issues or limitations only
on specific platforms. Running tests on the device first requires building a test
application image. Test application is an application which includes the operating
system modules and tests which test those modules. The application is built into
a binary image and which is then transferred into the device flash memory in
operation called "flashing". When the application is loaded into memory after
the reboot, the tests are then executed on the device.
A simulator environment tries to simulate the targeted hardware platform.

Testing on simulated hardware does not require to own or purchase real devices.
Simulators can be used to test many features, but they cannot simulate precise
timers, real-life conditions and actual real hardware reliably [9]. The simulator
is running on PC hardware and on operating systems such as Linux or Windows
which are general purpose operating systems. These operating systems cannot
simulate the strict timing requirements of RTOS so real IoT hardware is needed
for tests which require these kind of requirements.
Native PC platforms running x86 architecture such as Windows, Linux and Mac

OS are great for testing features with no concern of limited resources. Native or
virtual computers for these operating systems provide speed and reliability to
testing. Native computer environments are great for unit tests since unit tests
do not often require specific hardware and developers can run unit tests in the
middle of development.
Testing on PC platforms requires compiling the tests to x86 architecture. GNU

tools such as GNU Compiler Collection (GCC) and GNU Make can be used
to compile C/C++ to x86 architecture. GCC provides compilers for C and
C++ languages and Make is used for generating the test executables by using
the compilers. However, the operating system must support compiling to these
platforms. GNU tools are available natively on Linux and Mac OS, and on
Windows through MinGW. CMake tool can be used to provide cross-platform
build environment for all the mentioned platforms. CMake provides compiler-
independent build configurations which can be built using the compilers available
on the running platform.

2.2.3. Test automation and continuous integration

Manual testing is slow and often impossible to do for every revision of developed
software. Automated software testing can easily test every system iteration. Test
automation means running tests on a separate software from the testable system.
Huizinga et. al. present this as separation between test execution and software
to be tested and the comparison of real test results with the expected outcome
[10].
There are multiple approaches to test automation such as the graphical user

interface (GUI) testing, the application programming interface (API) driven
testing, framework testing and continuous testing. Automation frameworks
include data-driven testing, modularity-driven testing, keyword-driven testing,

13

hybrid testing, model-based testing, code-driven testing and behaviour driven
testing.
Test automation for embedded operating system projects means automating

unit tests and regression tests in continuous integration and delivery (CI/CD).
Regression or smoke testing means running the existing set of functional tests
against the new software version in order to validate no issues arise. Continuous
integration is a pipeline which automates the testing process by running tests for
new software versions. A pipeline is a process which contains a start and an end
and all the steps between needed to reach the end. The CI pipeline can be set
to trigger on schedule or by an event such as Pull Request (PR). Open-source
projects usually have PR validation enabled which means running predefined
checks against the PR. Daily or nightly CI pipelines are also common to execute
tasks which might take too long for PR pipeline.
Figure 2 shows the process of making a PR. Pull request is created in the first

step. This allows the review process and the CI process to begin. Appropriate
people are assigned for reviewing the PR. They go through the code and decide if
changes are needed or not. While the review process is in place the code is tested
for each PR check. PR checks are defined beforehand and they can be static code
analysis, code style analysis, compile checks, tests or many other tasks which can
be automated and can be used to validates the PR. If a required PR check fails
or changes are requested then the PR goes through the check and review process
again until the PR is in such state that it can be merged to the code base by the
maintainers.
There are many continuous integration tools available. Table 1 shows top 9

used CI software with free license according to online surveys [11]. Jenkins is
open source CI software which allows free on premise CI setup. The majority of
CI software are hosted online services, but often they provide enterprise solutions
for on premise installations.

Table 1. Top 9 free CI software in 2019

Software Maintainer License
Jenkins community MIT
Travis CI Travis CI Free for open-source, Proprietary
TeamCity JetBrains Limited free, Proprietary
CircleCI CircleCI Limited free, Proprietary
Codeship Codeship Limited free, Proprietary
Gitlab CI Gitlab Limited free, Proprietary
Buddy Buddy Limited free, Proprietary
Wercker Oracle Corporation Limited free, Proprietary
Shippable Shippable Free for open-source, Proprietary

14

Figure 2. Pull request process

2.2.4. Unit testing frameworks

A unit testing framework is a collection of tools for helping to write and run
unit tests. Unit testing frameworks are often categorized into xUnit derivative
frameworks and other frameworks. A framework is considered xUnit derivative if
it implements the test structure and execution design originally popularized by
SUnit unit testing framework for Smalltalk programming language. Unit testing
frameworks which are xUnit derivative use test architecture which consists of test
suites, test cases, test fixtures, assertions and a test runner. Other frameworks
use other test architectures and methods in order to run unit tests.
Assertions are used to test a single logical condition. They are the smallest

macro of xUnit frameworks and verify the unit under test. Test case is a single
test in xUnit frameworks and can contain multiple assertions. Test cases have a
name which can be used to identify which test case failed or passed. Test suites
are a collection of test cases. Test suites are used for similar test cases or when the
test cases need to share test code. Order of tests does not matter in a test suite
since all test cases are verified. When test cases share code or preconditions, test
fixtures can be used. The test fixture sets up the initial state for the common
code which then can be used by many test cases. Test runner is a program which
can be used to run all written tests. XUnit frameworks usually also provide a
test report formatter which outputs test results in many formats such as XML.

15

Test case execution in xUnit-based tests consists of three steps. The first step
is setup. In setup, an isolated test environment is prepared for the test. After
setup, the test is then run. The final step is teardown where the test environment
is destroyed regardless of the test resolution.
There are many open source unit testing frameworks available. The most

feature-rich state-of-the-art unit testing frameworks for C/C++ projects are listed
in the Table 2. All the frameworks except Catch2 are xUnit derivatives and follow
the principles of xUnit frameworks. Catch2 uses require and section macros
instead of test fixtures. Catch2 also supports behaviour-driven development
(BDD) macros to write tests using BDD terminology.

Table 2. List of state-of-the-art open-source C/C++ unit testing frameworks

Framework License
Boost.Test BSL-1.0
Catch2 BSL-1.0
CppUnit LGPL
CppUTest BSD-3
Google Test BSD-3
Unity MIT

Most unit testing frameworks also support parameterized tests or data
generators. Parameterized tests allow the same test to be run multiple times
using different values. Data generators generate data which is used for test values.
Mocks and stubs can be used to test code without external dependencies.

Mocks and stubs act as the external dependencies but without actual
implementation. The stub is a minimal presentation of code which actual
compiles. Stubs can be classes or functions which implement the required
interface without functionality. Mocks are way to preemptively assign an
expectation to a call. This means a mocked call is assigned expected behavior or
return value that expectation is determined when the code is run. All C/C++
code support stubbing, but test frameworks must provide the support for mocks.
Google Test, CppUTest, Boost.Test and Unity provide support for mocks through
an additional module.

2.2.5. Evaluation of testing methods

Evaluation of IoT operating system testing methods is different than measuring
actual tests themselves. Unit testing metrics are a subset of test metrics. These
metrics can be used to measure the quality of the unit tests and unit testing tools.
Table 3 lists useful metrics for evaluating unit tests.
Testing metrics can be used to measure tests, but other metrics are needed to

measure tools used for software testing. Michael et. al. present a set of objective
metrics which can be used for measuring the effectiveness of software testing tools

16

Table 3. Unit testing metrics

Metric Description
Unit test Volume Number of unit tests.

Code coverage Percentage of code
tested.

Runtime Time to run
all unit tests.

[12]. These metrics can be used to measure the effectiveness of the testing tools
of IoT operating systems which are implemented.
Human Interface Design (HID) measures the difficulty of using the tool

and how likely there will be errors when using the tool for a long time. High HID
value usually means there are issues in the user interface. HID is calculated as

HID = KMS + IFPF + ALIF + (100 − BR), (1)

where the variables are
KMS = the average number of keyboard to mouseswitches per

function,
IFPF = the average number of input fields per function,
ALIF = the average string length of input fields, and
BR = the percentage of buttons whose functions were identified

via inspection by first time users times ten.

Maturity & Customer Base (MCB) measures how mature the tool is.
MCB is calculated as

MCB = M + CB + P, (2)

where the variables are
M = the number of years the tool has been used in real world

software,
CB = the number of customers with more than one year of

experience applying the tool, and
P = the number of previous or other projects that used the tool.

Tool Management (TM) measures the level of access to information or
functions. TM is calculated as

TM = AL+ ICM, (3)

17

where the variables are
AL = the number of access levels to tool information, and
ICM = the sum of the different methods of controlling tool and

test information.

Ease of Use (EU) measures how easy it is for new users to learn how to use
the tool, how easy it is to retain knowledge for frequent and casual users and
what is the operational time for frequent and casual users. EU is calculated as

EU = LTFU +RFU +RCU +OTFU +OFCU, (4)

where the variables are
LTFU = the learning time for first time users,
RFU = the retainability of procedure knowledge for frequent

users,
RCU = the retainability of procedure knowledge for casual

users,
OTFU = the average operational time for frequent users, and
OFCU = the average operational time for casual users.

User Control (UC) means how well the tool allows users to specify which
areas of the software are critical to test or need more test coverage. High UC
values mean the tool gives freedom to testers.
Test Case Generation (TCG) measures how easy it is to automatically

create or generate or modify test cases. TCG is calculated as

TCG = ATG+ TRF, (5)

where the variables are
ATG = the level of automated test case generation between 0

and 10 where 0 is test generation by hand and 10 is fully automated test case
generation, and

TRF = the level of test case reusability between 0 and 10 where
0 means test cases cannot be modified and 10 means test cases can be modified
by user friendly methods.

Tool Support (TS)measures how much technical support and documentation
is available to the users. TS is calculated as

TS = ART + ARTAH + ATSD −DI, (6)

where the variables are
ART = the average response time during scheduled testing,
ARTAH = the average response time outside of scheduled

testing,
ATSD = the average time to search documentation for desired

18

information, and
DI = the number of unsuccessful searches of documentation.

Estimated Return on Investment (EROI) measures how much benefit is
expected to get by using the tool. EROI is calculated as

EROI = (EPGxETTxACTH) +EII −ETIC + (EQCxEHCSxACCS), (7)

where the variables are
EPG = the estimated productivity gain,
ETT = the estimated testing time without tool,
ACTH = the average cost of one testing hour,
EII = the estimated income increase,
ETIC = the estimated tool implementation cost,
EQC = the estimated quality gain,
EHCS = the estimated hours of user support per project, and
ACCS = the average cost of one hour of user support.

The rest of the metrics are Reliability (Rel) which is the mean time between
failures, Maximum Number of Classes (MNC) which is the maximum
supported number of classes in a project, Maximum Number of Parameters
(MNP) which is the maximum supported number of parameters in a project,
Response Time (RT) which is the amount of time to implement a test case
for a project, and Features Support (FS) which accounts features such as
extensibility, integration with development tools and reporting.
Acceptance and portability tests which are used to evaluate how well a new

tool will fit into the testing process. The acceptance tests measure how well the
tool meets the requirements. Portability tests are used when there are old tests
or tools and it needs to be measured how easily the old tests or tools can be
converted to use the new tool.

2.3. Open-source operating system projects

There are many open-source IoT operating system projects available to use or
contribute to. The projects usually have a regression test process in place and
often even provide custom or third-party testing tools for helping with testing.
Qutqut et. al. provided a great list of operating systems for low-end IoT devices
[13]. I updated this list to include current state-of-the-art operating systems
which support Arm Cortex-M based IoT devices. Table 4 lists current state-of-
the-art open source operating systems. These operating systems and their testing
approaches are introduced next.
Apache Mynewt is an open source real-time operating system managed by

Apache Software Foundation. Apache Mynew targets devices using MCUs
from Arm Cortex-M0-M4 family, MIPS and RISC-V. Apache Mynewt is a full

19

Table 4. State-of-the-art open-source operating systems for low-end IoT devices

Operating system Managed by License
Apache Mynewt Apache Software Foundation Apache License 2.0
Contiki-NG Contiki-NG maintainers BSD-3
Amazon FreeRTOS Amazon Web Services MIT
Mbed OS Collaborative project

managed by Arm Apache License 2.0
RIOT Freie Universität Berlin,

INRIA, and Hamburg University
of Applied Sciences LGPLv2

Zephyr Linux Foundation,
Wind River Systems Apache License 2.0

operating system and features a kernel, drivers, file system and a networking
stack of various technologies and protocols [14].
Apache Mynewt provides a tool for build and package management called Newt.

Newt tool can also be used to run unit tests. Apache Mynewt also provides a tool
for testing packages on embedded hardware or in simulated environment called
testutil. Unit tests are found inside the main repository next to the features
they are testing in separate folders. Apache Mynewt uses Travis CI to validate
Github Pull Requests (PR). Pull request validation consists of building core
application for 31 device platforms, building blinky application (application which
demonstrates LEDs on the device) using 60 different Board Support Packages
(BSP) and finally running unit tests with Mynewt tool on Linux and Mac OS.
Contiki-NG is a fork of a popular open source multitasking operating system

Contiki [15]. Contiki-NG targets devices from Arm Cortex-M3-M4, TI MSP430,
TI SimpleLink and other 32-bit MCUs. Contiki-NG supports native Linux, Mac
OS and Windows processes and simulation with Cooja virtual platform. Contiki-
NG is a full operating system and features a kernel, drivers, file system and a
networking stack of various technologies and protocols.
Contiki-NG applications are built using a selection of 3rd party development

tools, but provides a Docker image for easy development environment installation
using Docker virtualization. Tests are located in the main repository under
the tests directory. Unit tests are written using their own unit testing tool.
The tool is a C/C++ script which allows defining, registering and running
unit tests. Contiki-NG uses Travis CI to validate Github Pull Requests. CI
runs tests by executing make in each test directory. CI builds documentation,
compiles example applications for native PC platform and various IoT boards,
runs simulation tests and unit tests.
FreeRTOS is an open source real-time operating system kernel originally

developed by Richard Barry and his company Real Time Engineers Ltd [16].
The FreeRTOS project was passed to Amazon Web Services team in 2017 [17].
Amazon provides a commercial version of Amazon FreeRTOS called OpenRTOS

20

sold by Wittenstein High Integrity Systems (WHIS). WHIS also develops safety-
certified SAFERTOS which is based on FreeRTOS, but targets safety-critical
markets such as medical, industrial and automotive fields. FreeRTOS supports
over 40 different MCU architectures such as Arm Cortex-M0-M33 and RISC-V
including over 15 different compiler toolchains to build applications for these
architectures. FreeRTOS is a kernel-only operating system and provides no
drivers, file system or networking features by default. Amazon FreeRTOS extends
FreeRTOS kernel with connectivity, security and over-the-air (OTA) updates.
FreeRTOS kernel only provides demo applications publicly for testing

FreeRTOS ports. Tests for these port features are located in the code repository
and have to be run on the actual hardware. Older common code is tested
using SAFERTOS test harness and new features have tests which have not been
published [18]. Amazon FreeRTOS however provides tests in their repository for
modules outside the kernel. Amazon FreeRTOS also provides AWS IoT Device
Tester tool to build, flash and run tests. Amazon FreeRTOS uses Unity unit
testing library for internal unit tests. Amazon FreeRTOS CI is not public, but it
contains build and code style checks, building on Linux and 97 AWS Batch jobs
which test different features of the operating system.
Mbed OS is an open source embedded operating system designed for IoT

systems [19]. Mbed OS is part of Mbed platform managed by Arm. Mbed
OS is a full operating system with RTOS, file system, security and a networking
stack of various technologies and protocols. Mbed OS 5.12 is also PSA certified
[20]. Mbed OS targets devices running Arm Cortex-M family MCUs. Mbed OS is
part of Mbed secure device-to-cloud story with seamless integration with Pelion
Device Management Update Services which provides remote firmware updates.
Mbed OS provides Mbed CLI tool for building applications, flashing and

testing. Mbed CLI can be integrated with all supported toolchains: Arm
GCC, Arm Compiler and IAR. Mbed also provides Online compiler for building
applications. For testing Mbed OS provides Python-based testing tools [21].
Greentea is a tool for running functional unit or integration tests on hardware.
Greentea uses utest test harness to run tests on the device. Greentea works by
automatically building, flashing and running the tests on a single IoT device.
Icetea allows interoperability testing using multiple devices and external services.
Icetea works by flashing a command-line based application to the device and then
sending test commands from the PC to the device through serial terminal. Mbed
unit testing tool is the tool developed in this thesis work and used for testing Mbed
OS components on PC environment. Mbed OS can also be simulated for Cortex-
M-based Fixed Virtual Platforms (FVP) using Arm FastModels. Greentea tests
can be run on FastModel FVPs using the mbed-fastmodel-agent Python module.
Mbed OS tests are located in the code repository. Greentea tests are located under
TESTS, Icetea tests under TEST_APPS and unit tests under the UNITTESTS
directory. Mbed OS CI uses both Jenkins and Travis CI for validating Github
Pull Requests. Travis CI is used for building documentation, testing Python tools,
testing the littlefs file system and other small tasks such as license check. Jenkins
is used for running unit tests, building test applications, running hardware tests,
checking dynamic memory usage and other more tasks which are heavy on

21

resources. The Jenkins pipeline adjusts to the content of the Pull Request so
only necessary tasks are run [22].
RIOT is an open-source IoT operating system originally developed by FU

Berlin, INRIA and HAW Hamburg [23]. RIOT is based on FeuerWare, an
operating system for Wireless Sensor Networks [24]. RIOT was originally named
µkleos but was renamed in 2013 when the project went public. RIOT targets
devices from AVR, ARM7, Cortex-M0-M7, Cortex-M23, ESP8266, ESP32,
MIPS32, MSP430, PIC32, RISC-V and x86 architectures. RIOT is a full
operating system with a kernel, drivers, file system and a networking stack which
supports various technologies and protocols.
RIOT tests are located in the repository under tests. RIOT provides test

applications to be run on hardware. Tests are run by running make inside the
test directory. The test runner for RIOT is Python-based tool. Unit tests are also
provided and Embedded Unit unit testing framework is used to run unit tests on
hardware [25]. RIOT CI uses Travis CI and Murdock for validating Github Pull
Requests. Travis CI is used for static code analysis and building documentation.
Murdock is a CI server written in Python and developed for RIOT [26]. Murdock
is used for running static tests, building test applications and running hardware
tests.
Zephyr is an open source RTOS for devices with constrained resources hosted

by Linux Foundation [27]. Zephyr supports MCU architectures such as ARC,
Arm, NIOS II, RISC-V, Tensillica and x86. Zephyr is a full operating system
with a kernel, drivers, file system and networking stack which supports various
technologies and protocols.
Zephyr provides a command-line tool for source code management, flashing

and debugging called west. For testing Zephyr provides a test framework called
Ztest (Zephyr Test Framework). Ztest can be used for integration tests and unit
tests. Tests are located in the repository under tests. Unit tests can be run on the
QEMU emulator or on real hardware by using the sanitycheck script. Sanitycheck
allows running tests on a single device or multiple devices. Zephyr uses Shippable
for CI. Zephyr CI validates Pull Requests by checking Git commit formatting and
coding style (linting), building documentation and running sanity check tests for
various boards and MCU architectures in emulated environment. Zephyr also
runs nightly builds against the master branch on Shippable.

22

3. DESIGN OF UNIT TESTING

The testing of Internet of Things software share many methods and ideologies
that are used in other software testing especially in embedded software testing.
Similarly common issues can be identified from these testing processes which
guide the testing methodology towards better results. IoT operating system
testing methods follow these widely used practises, but set the focus on the
number of supported target platforms and validation of management of limited
platform resources. This chapter lists problems in Mbed OS testing methods,
finds solutions to fix those problems and presents a unit testing framework
implementation for Mbed OS.

3.1. Identifying problems in Mbed OS testing methods

Identifying problems in testing methods is a common task in any software
development process. Common testing problems can be identified since many
testing methods are similar in IoT operating system projects. Testing problems
can be generic or affect only certain type of testing or testing of the particular
component [28].
Common testing methods for the operating systems from the previous chapter

show that there are mainly two kinds of tests in open source IoT operating system
projects:

• Functional tests
• Unit tests

Table 5. Capabilities of testing methods for each OS

OS Unit tests Functional tests
x86 simulator HW x86 simulator HW

Apache Mynewt no yes yes no yes yes
Contiki-NG yes yes yes yes yes yes
Amazon FreeRTOS no no yes no no yes
Mbed OS yes1 yes yes no yes yes
RIOT no no yes no no yes
Zephyr yes yes yes yes yes yes

1) Mbed OS unit testing framework was developed for this thesis

These types of tests are usually written for operating systems. Functional tests
(test applications) and unit tests are often run as regression tests in addition to
building tests. Additional dimensions are the testing platform and continuous
integration. Functional tests are mainly run on real IoT hardware. Unit tests are
run on x86 platforms, simulators and even in hardware. Different projects run

23

tests on different environments. In CI testing mainly consists of running tests on
x86 or simulator environments. Mbed OS and RIOT run hardware tests in CI.
Table 5 summarizes the capabilities of testing methods on studied OSes. We can
see from the table which testing methods are missing and try to implement them.
The main problems in Mbed OS testing were caused by long Pull Request flow

in Mbed OS CI pipeline. The reason for this was no unit tests, no auto triggering
tests which means no tests which are automatically started when PR is created or
updated, limited test resources and manual Pull Request process. The problem
with Mbed OS regression test pipeline was that all tests were Greentea hardware
tests which means tests are Mbed OS applications which have to be built and
then executed in limited number of IoT devices. Running tests on real hardware
is slow and costly.

3.2. Solutions to Mbed OS testing

Mbed OS CI related problems were mostly solved by improving Mbed OS
regression test selection and optimization, but it did not solve all the problems in
Mbed OS testing [22]. Mbed OS needed lower level tests. There was no proper
unit testing process for Mbed OS testing in place until Mbed OS 5.10. Mbed OS
had unit tests for hardware and some networking unit tests for PC platform, but
no single framework to rely on and no common process to follow. No unit tests
were executed for PRs in the regression pipeline either. Fast Models could also
be added to run tests on the simulated environment. Using a simulator instead
of actual hardware would extend hardware life and reduce test resource costs.

3.3. Requirements

Requirements for this unit testing framework were the following:

• C/C++ compatible
• Cross-platform support
• Mbed CLI integration
• Easy CI integration
• Standard test report formats
• Unit tests are easy to add and extend
• Parameterized tests
• Mocks can be used

Mbed OS codebase is 94.1% C and 3.6% C++ which means that C/C++
compatible tools are required. The unit testing framework has to be compatible
with all major development platforms: Windows, Mac OS and Linux. How the
tool is used has to be nearly identical regardless of the development platform.
Unified user interface and Mbed CLI development tool integration are required.
The framework must be easy to install and integrate into a testing pipeline.

Unit test results have to be repeatable so this means the tool and all its

24

dependencies must be under version control. In CI test reports are collected
and analysed which means the generated test reports have to be in computer-
readable text format. XML and HTML are the most commonly used markup
languages today which makes them ideal for test reporting.
The process of adding new unit tests has to be simple. First, unit tests should

be written with minimal amount of configuration. Too much scaffolding around
tests increases unnecessary complexity. Tests should also auto-register so there
is no need to keep a list of unit tests in code. The unit test framework should
also support for parameterized tests so tests can be executed multiple times with
different parameters.

3.4. Unit testing framework

A tool review was constructed in order to find the best unit testing framework for
Mbed OS. Summary of the tool review can be seen in Appendix 1. I compared
the features of the most feature-rich state-of-the-art open source C/C++ unit
testing frameworks available listed in the previous chapter. Selection criteria for
the tool were the number of features and active development of the framework.
There were unit tests inside the Mbed OS repository which were using CppUTest.
Google Test was selected as the underlying assertion library for the unit testing
framework. Unit tests written use setup-teardown architecture shown in the
Figure 3.

Figure 3. Unit test for CircularBuffer

25

3.5. Building tests with CLI

Google Test acts as a test runner, but in order to build these test suites a
build environment is needed. Compilers which can be used to build Mbed OS
applications do not work on native development platforms. GNU compilers can
be used instead since they can be installed on Windows, Linux and Mac OS. In
addition, Arm GCC compiler is based on GNU GCC compiler which makes the
transition easier. Make and g++ can be used to build the test applications.
CMake was selected as a cross-platform tool for setting the build environment

on any platform. I configured CMake to automatically download Google Test and
add it to each build target. Build targets means the test executables which are
built using make. Using input variables for CMake it was possible to compile test
applications optionally with code coverage flags. CMake toolkit includes CTest
test runner which can be used to automatically find all built tests and run them.
All unit test suites must have a configuration file for CMake. This configuration
file is used to include necessary headers, test sources and stubbed sources to the
built test. Figure 4 shows how the file is structured.

Figure 4. Unit test configuration file for CMake

26

A Python-based command line tool was developed to put the building and
running of tests behind a user-friendly interface. Python-based tool allows easy
integration with Mbed CLI application. Figure 5 shows the architecture of the
framework.

Figure 5. Mbed OS unit testing framework architecture

Figure 6. Mbed OS unit testing CLI

The unit testing tool provides options for configuring how CMake builds the
tests. The tool can also be used to generate a new unit test suite from a template.
Figure 6 shows how the command-line tool is used and all the options the tool
allows to select.

27

3.6. Mbed OS CI integration

The unit testing framework was integrated into Mbed OS CI for running unit
tests for Pull Requests. CI environment used is Jenkins. Unit tests run in Jenkins
pipeline job written using Groovy. The job is integrated into the main pipeline
which starts the job if unit tests need to be run.
There are three main steps in the job. The first step is building unit tests.

The job sets a Python virtual environment and compiles all the unit tests with
the code overage flag on. The second step is for running the tests using the unit
testing tool while generating code coverage reports in HTML and XML. Tests
are also analysed with Valgrind for memory leaks. The final step is publishing
test results in xUnit format and code coverage reports. Figure 7 shows this test
job in pseudocode.

Figure 7. Unit testing pipeline job

28

4. EVALUATION

The unit testing framework was developed for Mbed OS and unit tests were added
into the Mbed OS CI for PR regression testing. The implemented framework
was evaluated with different tests and an effectiveness analysis. Acceptance
and portability testing was done in form of running existing unit tests with
the framework and analysing results. Performance was tested against Greentea
hardware tests. Here are the evaluation and the findings of implementing this
method into Mbed OS testing. Data is acquired from Mbed OS code repository
and Mbed OS continuous integration.

4.1. Acceptance and portability tests

The framework was tested by taking a subset of existing unit tests written for
CppUTest. These tests were ported to Google Test format. Both frameworks use
xUnit test structure so porting was a simple process. First included headers were
updated by including Google Test instead of CppUTest test harness as seen in
the Figure 8.

Figure 8. Include Google Test

Google Test uses test fixtures to define test suites for test cases which use
the same data configuration. Ported tests all use setup-teardown structure so
CppUTest TEST_GROUP for the testable classes were changed to test fixture
classes. A test fixture class is shown in the Figure 9.

Figure 9. Create a fixture class

The process of updating the test case and assertion macros was the final step.
Google Test uses TEST_F macro for the test fixture test case seen in the Figure
10. Assertion macro for equality comparison in Google Test is EXPECT_EQ
which expects two values. Assertion macro changes from CppUTest to Google
Test can be seen in the Figure 11.
The existing unit tests were then run using the unit testing framework to

verify that test results were identical when using either library. These tests gave
confidence that the framework could be added into Mbed OS testing tools.

29

Figure 10. Update test case macros

Figure 11. Update test assertion macros

4.2. Performance tests

Critical information was to measure the performance of the framework against
existing tools. Greentea is used to run unit tests on Mbed hardware so these
performance tests were done to know how well the unit testing framework
performed against hardware tests.
The test was run on Xubuntu 18.04 LTS virtual machine on Apple MacBook

Pro 13" 2017. Mbed device for this test was NXP FRDM-K66F which is a low-cost
development platform running Arm Cortex-M4 processor cores. FRDM-K66F
was connected to the laptop with a micro-USB-cable. Test setup is pictured in
the Figure 12.

Figure 12. Performance test setup

30

One test case was used. The test case was the same for both unit testing
framework and Greentea. Mbed OS event queue test which tests that event queue
executes a function passed by equeue_call. Greentea test application included
only the test_equeue_simple_call test case and Mbed OS unit tests only included
the TEST_F(TestEqueue, test_equeue_simple_call) test case.
Performance was measured by running both unit testing tool and Greentea

inside a timed function sequentially. One run was made using the unit testing
framework CLI directly and one run was made using Mbed CLI. The tools also
included the test case run-time. Mbed OS unit testing framework performance
against Greentea when running the same unit test can be seen in the Table 6.
These results show that unit tests run much quicker on the PC development
platform. Test applications have to be flashed into the device to run hardware
tests which is a slow operation. The same test case takes six times slower on this
IoT hardware than running on PC. The tools themselves add tens of seconds to
the overall runtime depending on how much abstraction there is and how many
tools are used.
Mbed OS unit tests were enabled on Mbed OS Pull Request checks at the end

of September 2018. Average runtime of unit tests in CI is 4.42 minutes. Test
result feedback times were faster for Mbed OS PRs than previously when only
Greentea tests were run on IoT hardware. Runtime for building and running all
the unit tests using Mbed OS unit testing framework is currently 118.1 seconds
or less than two minutes which means the unit test job in CI adds several minutes
to the overall runtime.

Table 6. Mbed OS test tool performance for same unit test

Test Test case runtime (s) Total runtime (s)
Unit test (tool directly) 0.01 0.11
Unit test (Mbed CLI) 0.01 0.59
Greentea unit test (hardware) 0.06 13.3

4.3. Unit tests

The unit testing framework was introduced in Mbed OS 5.10.0. It included 33
unit tests as an example. 5.10.1 patch release migrated all existing unit tests
written using CppUTest under this framework. Mbed OS unit test volume over
time can be seen in the Figure 13.
Each test suite contains unit tests for a single Mbed OS source file. All test

suites contain at least one test case. Figure 14 shows which modules have test
suites written for. The unit testing framework allows generating test coverage
reports from the test results. Currently Mbed OS unit test coverage is for 59.9%
for lines of code and 42.1% for conditional or branch coverage. The coverage
is calculated only for files which have tests written for so the total coverage is

31

Figure 13. Number of Mbed OS unit tests

Figure 14. Unit test suite composition in Mbed OS

less than that. A detailed summary of the code coverage results is presented in
Appendix 2.

4.4. Effectiveness analysis

Mbed OS unit test framework evaluation using testing tool metrics listed in
Chapter 2 can be seen in the Table 7. Human Interface Design was calculated
by adding KMS which is zero for the framework since only the keyboard is used,
IFPF which is one for a single command line input field, and ALIF which is 35
for average test command length together. BR value was ignored since there are
no buttons on this user interface. Maturity was calculated by adding M which
is one year for this tool, CB which is one customer (Arm), and P which is zero
since this is the first time the framework is used in any project together. Tool
management was calculated by adding AL and ICM together which both are zero
for this framework. Test case generation was calculated by adding ATG which
is zero and TRF which is 8 since test cases are modifiable together. Feature

32

support was calculated as 3 since the framework is extensible, is integrated with
development tools and provides test reports.
Human Interface Design score is high because the unit testing tool is only

a command-line interface and there is no graphical user interface available.
Maturity is quite low because the tool is used only for one year in Mbed OS
testing. Tool Management is good because the framework consists of only open
source software and it is freely customizable. Test Case Generation score is
average because while tests have to written manually (file generation from a
template is available) tests can be freely updated. Feature Support value is
good. The framework can be further extended and it is integrated into Mbed
CLI development tools. The framework also provides test reports and coverage
reports. The rest of the metrics can be harder to calculate with limited amount
of information of the project so they are left out.

Table 7. Mbed OS unit testing framework effectiveness

Metric Value Verdict
Human Interface Design 36 Command-line interface
Maturity & Customer Base 2 Used only on Mbed OS

testing
Tool Management 0 Open to use by everyone
Test Case Generation 8 Tests written manually
Feature Support 3 Extendable and integrated

Mbed CLI

33

5. DISCUSSION

Analysis of state-of-the-art open-source IoT operating systems showed that all
operating systems have tests available. Functional tests are the most popular
tests in these projects. Test applications are built for the target platform and
then ran inside the device. Unit tests were also popular for quick testing. Most
operating system projects had unit tests which could be run on the development
platform or at least in the hardware.
All projects have Continuous Integration in place for validating incoming Pull

Requests. Common checks for all CIs are building tests, building documentation,
coding style analysis and static code analysis. Running unit tests is also popular
in most CIs. Hardware testing in PRs is done in a few of these projects.
Mbed OS unit testing framework solved previous issues in Mbed OS testing.

It allows developers to quickly validate written code without running integration
tests on real-life IoT devices. Developers can compile tests to x86 architecture and
to their native development platforms using native build tools. The framework
provides a cross-platform command-line interface which simplifies the process of
writing, building and running unit tests.
The framework is used in Mbed OS CI to run unit tests for Pull Requests and

nightly tests. Unit tests are the first test feedback which developers can get after
creating a Pull Request. Unit tests are run as a native process on PC platforms
allowing faster testing than running those tests on the actual IoT hardware which
results showed.

34

6. CONCLUSION

The goal of this thesis was to analyze and improve the testing methods of open
source embedded operating systems for IoT. Mbed OS testing methods were
improved by implementing a state-of-the-art Mbed OS unit testing framework.
The framework is now used by Mbed OS developers and over 700 unit tests have
been written since the tool has been released. Unit tests are also integrated into
Mbed OS Continuous Integration for validating Github Pull Requests.

6.1. Achievements

A unit testing framework was implemented for Mbed OS testing. Unit tests are
available in Mbed OS CI which can lessen the amount of hardware testing in CI.
I was able to conduct a study of existing unit tests frameworks and choose

the best underlying test framework for Mbed OS based on the tool review. I
implemented a framework which utilises many different tools behind a unified
user interface. This allows developers to use this tool in their daily development
and testing process.

6.2. Limitations

Comparing the testing methods of different operating system projects is difficult
because all the projects are different and have different sets of features which need
to be tested. Quality of tests is not considered since it depends on the testable
component. The focus of this thesis is to only analyse the testing methods of these
operating systems and try to find common methods which can be implemented
on open source embedded operating system projects for IoT.
This thesis only analyses the testing methods of six state-of-the-art open source

embedded operating systems for low-end IoT devices. These operating systems
were chosen because they all target similar MCUs and architectures such as
Cortex-M-family. More in depth research is needed to find more ways to improve
the testing methods of IoT operating systems.
Measuring how Mbed OS CI was improved by unit tests alone is difficult

because CI was constantly changing during that time and will not give reliable
results. It was also difficult to change the testing process and get developers to use
the framework. Some developers were more comfortable with writing hardware
unit tests using Greentea than using the unit testing framework.

6.3. Future Work

The unit testing framework is limited only on testing internal operating system
modules. Mbed OS unit testing framework could be integrated into Mbed OS
tools for allowing application developers to use the framework to test their own
components. This would require changing how the tool resolves file paths to test

35

sources and code coverage reports. The tool is very generic and can easily be
used in any C/C++ software project.
The framework requires to use Gcovr for generating code coverage reports.

The framework could be made more modular to allow using other tools for code
coverage report generation.
More research can be done to measure how efficient the testing tools of different

IoT operating systems are. Improving testing on a simulator is also an interesting
topic which would need to further analyse different operating system projects.
Artificial intelligence and machine learning could also be used to improve testing
methods. State-of-the-art static analysis tools can scan code and detect problems
but current operating system testing tools still lack automation and machine
learning especially for generating new tests.

36

7. REFERENCES

[1] Popular internet of things forecast of 50 billion devices by 2020 is outdated.
URL: https://spectrum.ieee.org/tech-talk/telecom/internet/
popular-internet-of-things-forecast-of-50-billion-devices-by-
2020-is-outdated, accessed: 24.11.2019.

[2] Who needs the internet of things? URL: https://www.linux.com/news/
who-needs-internet-things, accessed: 24.11.2019.

[3] Atzori L., Iera A. & Morabito G. (2010) The internet of things: A survey.
Computer Networks , pp. 2787–2805.

[4] Why a real-time operating system is a necessity for iot. URL:
https://www.intervalzero.com/rtos/real-time-operating-system-
necessity-iot/, accessed: 08.12.2019.

[5] Myers G.J., Sandler C. & Badgett T. (2011) The art of software testing.
John Wiley & Sons.

[6] Cohn M. (2010) Succeeding with agile: software development using Scrum.
Pearson Education.

[7] Fowler M., The practical test pyramid. URL: https://martinfowler.com/
articles/practical-test-pyramid.html, accessed: 28.11.2019.

[8] Iot testing tutorial: What is, process, challenges & tools. URL:
https://www.guru99.com/iot-testing-challenges-tools.html,
accessed: 24.11.2019.

[9] Simulated vs. real-device testing. URL: https://saucelabs.com/blog/
simulated-vs-real-device-testing, accessed: 01.12.2019.

[10] Huizinga D. & Kolawa A. (2007) Automated Defect Prevention : Best
Practices in Software Management. John Wiley & Sons.

[11] Top continuous integration tools: The 50 best ci & continuous delivery tools.
URL: https://stackify.com/top-continuous-integration-tools/,
accessed: 01.12.2019.

[12] Michael J.B., Bossuyt B.J. & Snyder B.B. (2002) Metrics for measuring the
effectiveness of software-testing tools. In: 13th International Symposium on
Software Reliability Engineering, 2002. Proceedings., pp. 117–128.

[13] Qutqut M.H., Al-Sakran A., Almasalha F. & Hassanein H.S. (2018)
Comprehensive survey of the iot open-source oss. IET Wireless Sensor
Systems 8, pp. 323–339.

[14] Apache mynewt. URL: https://mynewt.apache.org/, accessed:
30.11.2019.

37

[15] Ng: The os for next generation iot devices. URL: http://contiki-ng.org/,
accessed: 30.11.2019.

[16] Market leading rtos (real time operating system) for embedded systems
with internet of things extensions. URL: https://freertos.org/, accessed:
30.11.2019.

[17] (2012), Freertos. URL: https://aws.amazon.com/freertos/.

[18] Verifying a freertos port? URL: https://www.freertos.org/FreeRTOS_
Support_Forum_Archive/June_2012/freertos_Verifying_a_FreeRTOS_
port_5375606.html, accessed: 30.11.2019.

[19] Mbed os 5. URL: https://os.mbed.com/, accessed: 30.11.2019.

[20] Certified product: Mbed os 5.12 (arm mbed os). URL: https://www.
psacertified.org/products/mbed-os/, accessed: 30.11.2019.

[21] Testing. URL: https://os.mbed.com/docs/mbed-os/v5.14/tools/
testing.html, accessed: 30.11.2019.

[22] Klasila A. (2019) Mbed OS regression test selection and optimization.
Master’s thesis, University of Oulu.

[23] The friendly operating system for the internet of things. learn more. URL:
https://riot-os.org/, accessed: 30.11.2019.

[24] Will H., Schleiser K. & Schiller J. (2009) A real-time kernel for wireless sensor
networks employed in rescue scenarios. In: 2009 IEEE 34th Conference on
Local Computer Networks, pp. 834–841.

[25] Embedded unit. URL: https://sourceforge.net/p/embunit/wiki/
Home/, accessed: 30.11.2019.

[26] kaspar030, kaspar030/murdock. URL: https://github.com/kaspar030/
murdock, accessed: 30.11.2019.

[27] Home. URL: https://www.zephyrproject.org/, accessed: 30.11.2019.

[28] Firesmith D. (2013), Common testing problems: Pitfalls to prevent
and mitigate. URL: https://insights.sei.cmu.edu/sei_blog/2013/04/
common-testing-problems-pitfalls-to-prevent-and-mitigate.html.

38

8. APPENDICES

Appendix 1 Unit testing tool review summary
Appendix 2 Mbed OS unit test coverage report

Appendix 1. Unit testing tool review summary 39

Appendix 2. Mbed OS unit test coverage report 40

