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Abstract: Drought stress has induced dieback episodes affecting many forest types and tree species
worldwide. However, there is scarce information regarding drought-triggered growth decline and
canopy dieback in Mediterranean deciduous oaks. These species face summer drought but have to
form new foliage every spring which can make them vulnerable to hotter and drier conditions during
that season. Here, we investigated two stands dominated by Quercus frainetto Ten. and Quercus
canariensis Willd. and situated in southern Italy and Spain, respectively, showing drought-induced
dieback since the 2000s. We analyzed how radial growth and its responses to climate differed between
non-declining (ND) and declining (D) trees, showing different crown defoliation and coexisting in
each stand by: (i) characterizing growth variability and its responsiveness to climate and drought
through time, and (ii) simulating growth responses to soil moisture and temperature thresholds
using the Vaganov–Shashkin VS-lite model. Our results show how growth responsiveness to climate
and drought was higher in D trees for both oak species. Growth has become increasingly limited
by warmer-drier climate and decreasing soil moisture availability since the 1990s. These conditions
preceded growth drops in D trees indicating they were more vulnerable to warming and aridification
trends. Extremely warm and dry conditions during the early growing season trigger dieback. Changes
in the seasonal timing of water limitations caused contrasting effects on long-term growth trends of D
trees after the 1980s in Q. frainetto and during the 1990s in Q. canariensis. Using growth models allows
identifying early-warning signals of vulnerability, which can be compared with shifts in the growth
responses to warmer and drier conditions. Our approach facilitates establishing drought-vulnerability
thresholds by combining growth models with field records of dieback.
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1. Introduction

Drought stress due to climate warming and higher precipitation variability has been considered
among the main abiotic causes of forest dieback in the Mediterranean regions of southern Europe [1,2].
Climate warming can influence forests by modifying the start (e.g., earlier bud bursting) and
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duration of the growing season (e.g., delayed leaf fall), but also by amplifying drought stress
rising evapotranspiration rates [3–5]. Thus, understanding the vulnerability of forest ecosystems to
warming and drier conditions is crucial to ensure early decision of adaptive management measures,
particularly in drought-sensitive tree species [6]. Forest dieback episodes have reported widespread
growth reductions, loss of tree vigor (e.g., canopy dieback), and increasing tree mortality [7] in different
tree species and forest biomes [8]. The Mediterranean Basin is one of the major forest-dieback hotspots
where an increasing vulnerability to climate change has manifested [9].

Forest dieback has been observed since the end of the 20th century in drought-prone Mediterranean
oak forests [10–15]. These dieback events were associated to extreme climatic events as droughts,
but also involved fungal pathogens and pests as secondary stress factors [5,16]. Oaks are among the
most important tree species in terms of cultural, economic, and ecological values in Mediterranean
regions [17,18]. Under forecasted longer and more intense hotter droughts, Mediterranean oaks,
and specially anisohydric ring-porous, winter-deciduous species, are prone to showing an increasing
risk of dieback and mortality due to hydraulic failure or carbon starvation [19]. In these species,
drought impairs their photosynthetic activity, reducing their primary and secondary growth and
triggering leaf shedding [20,21]. Importantly, these species have to rebuild new foliage every early
spring before summer drought starts which makes them very susceptible to dry conditions from the
previous winter to early summer [22]. Furthermore, the impact of drought-triggered oak dieback
can be modulated by other intrinsic (e.g., tree height, competition) and extrinsic (e.g., soil conditions,
microclimate) factors [14,15,23,24]. However, little is known about the long-term responses to climate
and related vulnerability thresholds in co-occurring trees of Mediterranean deciduous oak species
showing different canopy dieback intensity after drought.

Here we follow a retrospective approach based on dendroecological analyses in two ring-porous,
winter-deciduous oak species showing dieback in southern Italy (Quercus frainetto Ten.) [14] and
southern Spain (Quercus canariensis Willd.). We used dendrochronology to characterize shifts in
long-term growth responses to climate and drought, and to define temperature and water availability
thresholds in order to detect the onset of growth decline preceding canopy dieback. The studied
oak species are particularly sensitive to increasing aridity and have been still scarcely studied
using dendroecologcal approaches [5,14,15,25,26]. The comparison of growth responses to climate
of coexisting trees with different drought impact in terms of canopy dieback could advance our
knowledge on the vulnerability thresholds to forecasted warming- and drought-related dieback and
mortality processes.

We hypothesize that (i) declining (D) trees show higher sensitivity to minimum and optimal
temperature and water availability thresholds for growth, and (ii) that growth of D trees diverged
from non-declining (ND) trees several decades before the onset of canopy dieback [27,28]. To compare
the growth responses to climate over the growing season, we used the Vaganov–Shashkin-Lite model
(hereafter VS-lite), a well-validated forward model of tree-ring formation [29–31]. This model simulates
monthly growth responses to temperature and precipitation, which can help to understand the
vigor-dependent growth responses thresholds of D and ND trees to climate warming and drought.

We evaluate how climate modulates growth of D and ND oak individuals in sites suffering
drought-induced dieback by assessing climate-growth responses and using the VS-lite model.
Our specific aims are (1) to compare the climate-growth responses in coexisting D and ND trees of
two Mediterranean oak species, (2) to analyze the drought-induced changes in growth dynamics of
ND and D trees, and (3) to characterize the shifts in growth responses thresholds across time using
the VS-lite model. We hypothesize that (i) ND trees should show less water limitations and lower
climate sensitivity prior to the dieback onset than D trees, (ii) shifts in vulnerability thresholds should
determine the onset of the growth decline, and (iii) ND trees should be less negatively affected by
drought stress than D trees, since D trees are assumed to be less drought tolerant by presenting a less
conservative stomatal regulation and, possibly, a xylem more vulnerable to embolism [15,32].
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2. Materials and Methods

2.1. Study Sites, Species, and Climate

We selected two forests with recent drought-induced dieback located in southern Italy (Q. frainetto in
San Paolo Albanese, Basilicata region) and in southern Spain (Q. canariensis in Gamir, “Los Alcornocales”
Natural Park, Andalusia) (Table 1). In these sites, mean oak density values are 348 and 54 individuals
ha−1, respectively.

Table 1. Characteristics of the sampled Mediterranean oak (Quercus frainetto and Quercus
canariensis) forests.

Variable Q. frainetto Q. canariensis

Site name San Paolo Albanese Gamir-Alcornocales
Latitude (N) 40◦00′50” 36◦34′12”

Longitude (W/E) 16◦21′01” E 5◦32′02” W
Elevation range (m a.s.l.) 850–1170 490–530

Aspect SW SE
Slope (%) 25–30 15

Annual precipitation (mm) 584 ± 17 560 ± 23
Spring precipitation (mm) 132 ± 6 141 ± 8

Mean temperature (◦C) 14.1 ± 0.5 16.4 ± 0.1
Mean spring temperature (◦C) 11.9 ± 0.2 14.6 ± 0.2

The Hungarian oak (Quercus frainetto Ten.) is a large deciduous tree native from the Balkan
Peninsula, northwest Turkey, and southern Italy (Figure 1). It is light-demanding and may reach
heights up to 30 m under optimal environmental conditions [33]. Hungarian oak growth is sensitive to
dry late spring and summer conditions [14,34]. The Algerian oak (Quercus canariensis Wild.) is native
to southern Portugal, Spain, Tunisia, Algeria, and Morocco. It inhabits sites with acid soils in the most
humid and warm parts of the Mediterranean coastal regions of the Iberian Peninsula and Northern
Africa [35]. Algerian oak growth is sensitive to dry and warm late spring conditions [26].

Climate in the study areas is Mediterranean with wet and mild winters and dry and warm
summers (Figure 1, Table 1). Monthly climate data to characterize both study areas were retrieved
for the period 1950–2017 from the E-OBS v.20e 0.25◦-gridded database, which has been subjected to
previous quality-check and homogeneity tests [36]. The warmest and coldest months are July (mean
temperature of 22–24 ◦C) and January (mean temperature of 9–10 ◦C), respectively; whereas the wettest
months are November in Italy (98 mm) and December in Spain (90 mm); and the driest month is July
(17 and 0 mm in Italy and Spain, respectively). Drought occurs in both sites from June to August
(Figure 1).

Monthly climate data were converted into seasonal values (December, January and February,
winter—WI; March, April and May, spring—SP; June, July and August, summer—SU; September,
October and November, autumn—AU) either by averaging (temperature) or summing (precipitation).
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Figure 1. Location of the study sites in southern Spain (Q. canariensis, red cross) and southern Italy (Q.
frainetto, blue cross). The background shows the elevation and the distribution of the species in the
Mediterranean Basin (Q. canariensis from [37], Q. frainetto from [38]). The lower plots show the climatic
diagrams for each study site.

2.2. Dendrochronological Methods

We sampled tree cores in pairs of neighbor dominant trees located 5–10 m apart, with contrasting
vigor status: declining (D trees, crown defoliation > 50%) and non-declining (ND trees, crown
defoliation < 25%). We sampled from 11 to 39 trees per vigor class in each site during summer
(Q. frainetto) and winter (Q. canariensis) 2017. Crown transparency was estimated by a visual assessment
performed by two independent observations on the same tree using binoculars [39]. We measured the
diameter at breast height (DBH) and height for each tree using metric tapes and a laser rangefinder,
respectively. Tree cores were extracted at 1.3 m using Pressler increment borer (Table 2), air dried,
and sanded until tree rings became clearly visible [40]. Wood samples were visually cross-dated
and measured with precision of 0.01 mm using a binocular microscope coupled to a semiautomatic
device (LINTAB™, Rinntech, Heidelberg, Germany). The COFECHA program was used to evaluate
the quality of the visual cross-dating of tree-ring series [41]. To estimate age at 1.3 m we counted the
number of annual rings. In case of cores without pith, the number of missing rings was estimated by
fitting a template of concentric circles with known radii to the innermost rings.

To evaluate climate-growth relationships, first we removed age- and size-related long-term
trends of tree-ring width series by converting raw tree-ring width series into ring-width indices
(TRWi). This was done by fitting a 30-year long spline to raw data to preserve high-frequency
growth variability, and then dividing observed by fitted values to obtain dimensionless, standardized
ring-width indices [40]. In addition, an autoregressive model was applied to each individual detrended
series to remove the first-order autocorrelation. Finally, a biweight robust mean was computed to
obtain the residual chronology (mean of pre-whitened, indexed series) for D and ND trees.

To assess the quality of these mean tree-ring series (two per site) we calculated dendrochronological
statistics for the common period 1950–2016: the first-order autocorrelation of ring-width data (AC),
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the mean sensitivity of ring-width indices (MS), which assesses the relative variability in width
between consecutive rings, the mean correlation between individuals (IC) [42]; and the expressed
population signal (EPS), which measures the statistical quality of the mean site chronology compared
to a perfect infinitely replicated chronology [43]. To quantify if D and ND chronologies were more
or less synchronized through time, 20-year long moving correlations overlapping by one year were
calculated between them in each site.

Table 2. Growth data, mean (±SE) values of diameter at breast height (DBH), height (H), tree age at 1.3
m, and dendrochronological statistics from the residual ring-width chronologies of Q. frainetto in Italy
and Q. canariensis in Spain for the common period 1950–2016.

Variable
Q. frainetto Q. canariensis

ND D ND D

DBH (cm) 32.3 ± 0.8 31.9 ± 0.9 48.5 ± 1.8b 55.8 ± 5.5a
H (m) 14.3 ± 0.6a 9.9 ± 0.5b 11.7 ± 0.2 11.1 ± 0.5

Defoliation (%) 8 ± 0.8b 66 ± 2.8a 10 ± 2b 73 ± 4a
No. trees/No. radii 24/34 27/34 11/11 11/9

Age (years) 1,2 140 ± 3a 132 ± 6b 107 ± 4b 117 ± 5a
Timespan 1851–2016 1831–2016 1897–2017 1873–2017

RW ± SE (mm) 0.70 ± 0.01a 0.61 ± 0.02b 1.48 ± 0.04a 1.35 ± 0.05b
AC 0.75 ± 0.01 0.77 ± 0.02 0.62 ± 0.05 0.68 ± 0.06
MS 0.23 ± 0.02 0.23 ± 0.01 0.29 ± 0.02 0.32 ± 0.01
IC 0.51 ± 0.02 0.46 ± 0.02 0.47 ± 0.03a 0.36 ± 0.09b

EPS 0.951 0.928 0.930 0.898
1 Variables abbreviations: Raw data: RW: tree-ring width, AC, first-order autocorrelation. Residual chronologies:
MS, mean sensitivity; IC, mean inter-correlation among trees; EPS, expressed population signal. 2 Different
letters indicate significantly (p < 0.05) different mean values between ND and D oaks within each site based on
Mann–Whitney U tests.

2.3. Climate-Growth Relationships and Statistical Analyses

We quantified the climate-growth associations for the common and best-replicated period
1950–2016 using Pearson correlations. Correlations were calculated considering monthly and seasonal
climate variables (mean temperature, accumulated precipitation). The window of analyses included
from previous August to current October based on previous studies of the two oak species [5,14,15,26].
Correlations were calculated on mean, pre-whitened TRWi series of ND and D trees (residual
chronologies) but also considering individual series to test if ND and D trees were distinctly impacted
by climate. To assess whether these relationships changed through time in D and ND trees, we calculated
20-year moving correlations overlapping by one year, between D and ND series and also with climate
variables significantly (p < 0.01) correlated with TRWi. Comparisons of variables between D and
ND trees were assessed using Mann-Whitney U tests for non-parametric analyses and one-way
ANOVAs for variables following normality. All the tree-ring analyses were run with dplR [44], except
climate-growth relationships which were calculated using the treeclim package [45]. All analyses were
done in the R environment [46].

2.4. VS-Lite Forward Growth Model

We used the VS-lite model to assess differences in climatic controls of tree growth of D and
ND trees. The model is based on the principle of limiting factors affecting tree-ring formation [29],
and simulates anomalies of the standardized tree-ring width series (TRWi) based on the minimum
growth response to temperature (gT) and soil moisture (gM) at monthly scale. The daily solar radiation
is also considered by insolation (gE) estimated by site latitude and did not vary from year to year [30,31].
We used the VS-lite model to simulate growth though Bayesian estimations using two parameters:
first, the threshold below which growth will not occur (T1 for temperature, M1 for soil moisture), and,
second, the threshold above which growth is not limited by this climate factors (T2 for temperature,
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M2 for soil moisture). The growth responses to temperature (gT) and soil moisture (gM) are simulated
by the calibration on these parameters. We simulated VS-lite chronologies for the period 1950–2016
using the calibrated parameter for each D and ND tree of each species. We evaluated the assumption
of uniform priors for the growth function parameters (with independent and normally distributed
errors for TRWi values) by 13,000 iterations using three parallel chains and a white Gaussian noise
model error [31]. To test the model performance, we divided the study period in two sub-periods
to cross-validate changes into periods 1950–1983 and 1984–2016. To estimate monthly soil moisture
from temperature and total precipitation, the VS-lite model uses the empirical Leaky Bucket Model of
hydrology [47]. For the entire period 1950–2016, the growth parameters were estimated using annual
intervals to produce the best correlation between observed and simulated chronologies. For this study
the specific parameters (e.g., runoff, root depth, growing season length, etc.) were taken from previous
studies [5,15,26,30,31,48–51]. Snow dynamics were not explicitly considered in the model and all the
precipitation was assumed to be liquid, which is plausible for the study sites where snow precipitation
is rare in Q. canariensis sites and scarce in Q. frainetto forests.

3. Results

3.1. Climate Trends, Size, and Growth Patterns

Mean annual temperature in both study areas showed significant (p < 0.05) and positive trends
since the 1970s, particularly in the Q. canariensis site (mean rate + 0.01 ◦C year−1). All months except
November showed significant and positive trends in mean temperature in the Q. canariensis site,
and spring and summer temperature in the Q. frainetto site. Seasonal precipitations did not show
a significant trend since the 1950s (Figure 2). Only March for Q. canarienesis showed a significant
negative (r = −0.27) trend in precipitation. Lastly, the spring and summer precipitations were low
during 1990 (117 mm), 1997 (132 mm), 2000–2001 (100 mm on average) in the Q. frainetto site, and
1985 (93 mm), 1994–1995 (69 mm on average), 1999 (78 mm), 2005 (60 mm) in the Q. canariensis site
(Figure 2).

In Q. frainetto, ND trees were taller and their stems were slightly thicker than D trees, in contrast to
Q. canariensis where D trees had thicker stems (Table 2). ND trees were older than D trees in Q. frainetto
but not in Q. canariensis (Table 2). The mean inter-correlation (IC) with the site chronologies was higher
in D trees in both sites indicating a higher coherence and higher responsiveness to climate. ND and D
trees had similar values of first-order autocorrelation (AC), whereas mean sensitivity (MS) was slightly
higher in ND trees. In both sites the EPS for D and ND trees was above the 0.85 threshold after 1920s
in Q. canariensis and after 1870s in Q. frainetto (Table 2).

Mean radial-growth rates were higher in ND than in D trees in both species for the common
period 1950–2016 (Table 2). Tree-ring width increased from the 1950s to late 1960s (more in ND trees),
but decreased after the 1970s in Q. frainetto (Figure 3). In Q. frainetto, growth of ND (positive trend)
and D (negative trend) trees diverged after the mid of 1990s. In Q. canariensis growth showed higher
rates in ND than in D trees in the 1960s and 1970s with a pronounced growth reduction after the late
1990s, which was higher in D than in ND trees (Figure 3). Regarding the moving correlations between
ND and D chronologies, it decreased since the mid 1980s in Q. frainetto, but increased after the 2000s in
Q. canariensis.

3.2. Climate-Growth Associations

Warm spring conditions negatively affected Q. frainetto growth, with more negative correlations
in D than in ND trees (F = 11.87, p < 0.01), whereas Q. canariensis growth negatively responded to
warm May and previous autumn (October) conditions, particularly D trees (Figure 4). Wet previous
winter and spring (April) conditions enhanced Q. frainetto growth of both vigor classes, with slightly
higher sensitivity in D trees, whilst wet current May conditions improved growth in Q. canariensis,
regardless crown defoliation, and also a previous wet October but only in ND trees (Figure 4).
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Moving correlations between TRWi and relevant climate variables showed a shift in Q. frainetto in
the 1990s for spring temperature, which has become a more important constraint of growth in D than
in ND trees (Figure 5). The relationships with previous autumn precipitation increased after the 1980s
with a shift from negative to positive values in both vigor classes, but showing higher correlations in D
trees (Figure 5). In the same way, the influence of spring precipitation increased more in Q. canariensis
D trees than in ND trees after the 1990s. Furthermore, May temperature has shifted from positive to
significant negative correlations with growth in Q. canariensis D trees.Forests 2020, 11, x FOR PEER REVIEW 7 of 19 
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and mean annual temperature (Mean T) for the studied sites during the 1950–2017 period. The statistics
show associations with time (r, Pearson correlation coefficients; p, probability level).
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Figure 3. Tree-ring growth series of non-declining (ND, blue symbols and lines) and declining
(D, red symbols and lines) oak trees in the two study sites from southern Italy (Q. frainetto) and
Spain (Q. canariensis), respectively. In the lower plots for each species, the lines show the residual
chronologies (mean series of pre-whitened ring-width indices, TRWi). Tree-ring width values are
means ± SE. The vertical dashed lines indicate the year when tree-ring width of D and ND trees
started to show significantly (p < 0.05) different trends (solid lines). The statistics show growth trends
(r, Pearson correlation coefficient; p, probability level). Temporal changes in moving correlations
(dashed black lines) between D and ND chronologies are shown in the right y-axis. Moving correlations
were calculated using 20-year long intervals shifted by one year for the period 1930–2016 (values are
arranged for the last year of each 20-year interval).
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Figure 4. Climate-growth associations observed for declining (D, red bars) and non-declining (ND,
blue bars) trees of Q. frainetto and Q. canariensis. Bars show Pearson correlations (means ± SE) obtained
by relating monthly or seasonal climate variables (mean temperature and total precipitation) and
individual series of ring-width indices, TRWi (residual chronologies). Uppercase and lowercase
abbreviations correspond to months and seasons (grey areas) of the previous (August–December)
and current (January–October) years, respectively. Correlations were also calculated considering
annual (AN) and seasonal climate data (AUp, previous autumn; WI, winter; SP, spring; SU, summer).
The dotted horizontal lines indicate the 0.05 significance level, and asterisks indicate significant (p < 0.05)
differences found between correlations of D and ND trees for each species based on ANOVAs.Forests 2020, 11, x FOR PEER REVIEW 10 of 19 
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Figure 5. Temporal changes in correlation coefficients between selected climate variables (spring
temperature and previous autumn precipitation for Q. frainetto; May temperature and spring
precipitation for Q. canariensis) and residual chronologies of declining (D, red lines and symbols)
and non-declining (ND, blue lines and symbols). Correlations were calculated using 20-year intervals
shifted by one year for the period 1950–2016 (values are arranged for the last year of each 20-year long
interval). Dotted horizontal lines indicate significant correlation coefficients (p < 0.05).

3.3. Forward Growth Modeling for Oaks Dieback

The comparison of mean growth response (gT, gM) during the growing season between D and ND
trees of both oak species showed longer seasons towards the early 21st century. The model indicated
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more pronounced soil-moisture limitations (gM < gT) in D trees, but a lower soil-moisture peak in ND
(Q. frainetto) and D (Q. canariensis) trees (Figure 6). In both oak species, the VS-lite model accurately
tracked the year-to-year growth variability (TRWi) for D and ND trees. The growth in both species
was limited by low temperatures (gT < gM) at the beginning and the end of the growing season,
with warmer conditions in D than in ND trees, and by reduced soil moisture availability (gM < gT)
during spring, summer, and autumn, with more lasting soil-moisture limitations in D than in ND trees
for both species (Figure 6). The estimated temperature (T1, T2) and soil moisture thresholds (M1, M2)
for growth confirmed the highest sensitivity of Q. frainetto D trees to warm spring temperatures
(maximum T1 value). In addition, D trees of both species showed higher soil moisture for optimal
growth conditions (M2), confirming the sensitivity of D trees to dry and warm conditions during the
growing season (Figures 6 and 7). The optimal growth conditions (T2, M2) during the 1950–1983 and
1984–2016 sub-periods confirmed the shift in growth responses to warm and dry climate conditions,
again with a higher sensitivity of D trees in both species (Figure 7, Table 3). Consequently, growing
conditions for D trees has sharply deteriorated because of increasing temperature and reduced soil
water availability.Forests 2020, 11, x FOR PEER REVIEW 11 of 19 
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Figure 6. Simulated monthly growth response curves (gT, gM; means ± SD) of the two study oaks using
the VS-Lite model for the period 1950–2016. The growth responses consider temperature (gT, circles)
and soil moisture limitations (gM, downward triangles) for non-declining (ND, blue symbols and lines)
and declining (D, red symbols and lines) trees. The blue and red areas indicate the estimated periods
with soil moisture limitation for ND (blue) and D (red) trees, respectively.
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Figure 7. Temporal shifts in growth responses to temperature (gT, red to yellow-tone lines) and soil
moisture (gM, blue-tone lines) averaged over decades (1950–1960, 1960–1970, 1970–1980, 1980–1990,
1990–2000) and the 2000–2017 period for declining (D) and non-declining (ND) oak trees. The arrows
show the averaged estimated period with soil moisture below the minimum thresholds for growth
(M1, minimum soil moisture) in ND (blue arrows) and D (red arrows) trees. The parts of the onset of
the growing season (grey boxes) with the most important changes in temporal thresholds of growth
responses to air temperature and to soil moisture are emphasized. Note the increasingly hotter (higher
gT) and drier (lower gM) limiting growth conditions during spring in both species.

Table 3. Pearson correlation coefficients (r) calculated between mean series of ring-width indices
(TRWi) and VS-lite ring width indices for the calibration period (1950–2016) and for the cross-validated
sub-periods 1950–1983 and 1984–2016 [31]. Pearson correlation values (r), always significant at the
0.05 level, are presented. Statistics of the Bayesian estimation of the growth response parameters (T1, T2,
M1, and M2 for minimum and optimal temperature and soil moisture values, respectively, for the
non-declining (ND) and declining (D) trees are presented.

Periods Variable
Q. frainetto Q. canariensis

ND D ND D

1950–2016
r 0.38 0.36 0.46 0.33

T1/T2 (◦C) 2.0/14.3 2.6/11.3 7.1/13.3 7.6/13.4
M1/M2 (v/v) 0.079/0.369 0.085/0.416 0.009/0.246 0.018/0.263

1950–1983
r 0.29 0.36 0.32 0.26

T1/T2 (◦C) 2.5/12.9 3.6/10.9 5.4/15.4 6.7/13.7
M1/M2 (v/v) 0.065/0.460 0.081/0.462 0.045/0.101 0.027/0.111

1984–2016
r 0.45 0.36 0.60 0.49

T1/T2 (◦C) 2.6/17.5 3.2/11.7 6.66/13.6 8.67/15.3
M1/M2 (v/v) 0.094/0.216 0.069/0.477 0.014/0.219 0.077/0.267
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The monthly growth response to temperature (gT) and soil moisture (gM) increased in Q. frainetto
and Q. canariensis since the 1950s, mainly for spring and autumn, due to lower soil water availability
and a significant rise in temperatures of both seasons (Figure 7). The estimated period with soil
moisture limitations (gM < gT) increased faster in Q. frainetto after the 1980s and in Q. canariensis after
the 1990s, with hotter climate conditions during the beginning of the growing season, these hotter and
drier conditions being more evident in D than ND trees for both tree species.

4. Discussion

4.1. Climate Variability and Growth Trends

The studied deciduous oak forests have experienced a rise in air temperature since the 1970s,
with warmer and drier spring-summer conditions during the 1980s (Q. frainetto) and 1990s (Q. canariensis)
(Figure 2), together with the occurrence of severe droughts in the 1990s and 2000s which triggered
dieback episodes in both sites [5,14,15]. The abrupt warming leading to climate aridification
differentially affected D and ND trees regarding the growth responses to climate and probably
in their xylem and leaf phenology [52]. These results seem to indicate a growth constraint after the
climate shift towards warmer and drier early springs, and match with previous studies showing a
growth decline after the 1990s with cascading effects for dieback symptoms characterized by shoot and
leaf shedding, reduced growth rates, and high mortality rates [5,27]. Our study suggests that drier
and warmer conditions will cause a growth reduction (Figure 3) in deciduous oak species growing in
seasonally drought-prone Mediterranean regions because of increasingly warmer and drier winter to
spring conditions [15,18,25]. Our simulations also indicate that these constraining conditions could
occur earlier if the climate continues warming.

In Q. frainetto D and ND tress did not show different growth rates prior to the 1980s. In contrast,
Q. canariensis ND trees showed higher growth rates than D trees during wet decades (1970s) (Figure 3).
The D trees in both species showed lower growth rates than ND trees after the 1990s shift towards
warm-dry conditions in agreement with previous studies indicating lower growth rates preceding
death in recently dead trees [27]. According to our results, the uncoupled growth trends between D
and ND trees since the 1990s could indicate that warmer and drier early growing-season conditions
are associated with dieback and growth decline [53]. This recent shift in growth trends indicate that
slow-growing oak trees were more prone to show dieback, possibly because they presented a poor
stomatal regulation which did not avoid the excessive water loss through leaves and impaired their
water–gas exchange dynamics [14,52,54]. However, other studies in deciduous temperate oaks as
Q. robur showed that D trees grew more in the past than ND trees suggesting that trees growing
vigorously and producing vessels of wider lumen may be also more prone to xylem embolism [32].

4.2. Warmer and Drier Conditions during the Early Growing Season Reduce Growth in D Trees

Our results showed negative growth responses to rising temperatures in both oak species (Figure 4),
but such responses significantly varied with canopy dieback, see also [2,5,52]. These findings point
out that an extended growing season due to warmer late winter and early spring conditions could
have enhanced growth of oaks as long as there is no soil water restriction [55–57] (Figures 4 and 5).
However, D individuals present a more tight coupling to growing-season temperatures than ND trees
(Figure 4), as we hypothesized, suggesting they are more vulnerable to the rising evapotranspiration
rates. It is noticeable that in the case of D Q. canariensis trees growth negatively responded to warmer
previous autumn, suggesting consumption of stored sugars due to cumulative drought stress [26],
whereas declining Q frainetto growth responded more to warm early spring temperatures when growth
resumption occurs (Figure 5). These differences could explain the vulnerability to hotter drought
of both ring-porous oaks [58] since we detected the most marked increase in temperatures mainly
during spring in Q. frainetto and during spring and autumn in Q. canariensis forests. We also found
that radial growth is enhanced by wet spring conditions in Q. canariensis, this correlation being higher
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in D than ND trees, by a wet previous winter in Q. frainetto; and by a wet previous autumn in both
species, affecting soil water availability and probably the storage and mobilization of non-structural
carbohydrates [57]. Climate-growth associations were stronger in ND than in D trees, particularly in
Q. canariensis (Figure 4). In the case of Q. frainetto, the possible effect of prior winter precipitation on
growth can be explained by the recharge of soil water reserves during this season since these study areas
are characterized by shallow and rocky soils with low soil water holding capacity [5,14]. The higher
responsiveness to inter-annual variability of winter precipitation of ND trees as compared to D trees
corresponds to the contrasting vulnerability between vigor status regarding the anisohydric behavior
of these species, since the development of earlywood vessels are more related with prior winter
climate [15], whereas the latewood formation is limited by current spring to summer cumulative water
deficit [22,58,59]. This stronger response of D trees to the warmer and drier spring-summer season
after the 1980s could explain the highest sensitivity and vulnerability to recent climate shifts (Figures 5
and 7). This result suggests that higher evapotranspiration rates due to heat stress during spring
could be a major trigger of dieback in similar Mediterranean, early-flushing deciduous oaks [18,26].
At the same time, warmer spring conditions seem to constrain the latewood production altering the
hydraulic conductivity of these species because although the earlywood accounts for most hydraulic
conductivity within the ring, many of its vessels embolize in summer [5,20,21].

Interestingly, similar findings to those presented here were obtained in other winter-deciduous,
Mediterranean oak species with ring-porous wood such as Q. faginea [14,20,21,54]. For instance, D trees
of those two species responded more to spring water availability because they need to form a new ring
of functional xylem before budburst in order to match its high spring water requirements to form new
foliage, and such water demand is increasing with a climate shift towards warmer conditions [20,54].
Overall, water shortage during spring and summer causes a severe reduction of latewood production in
ring-porous Mediterranean oak species [59], which might increase their susceptibility to further water
deficit if some earlywood vessels lose functionality due to drought-induced cavitation in spring [21].
On the other hand, the positive impact of previous-year precipitation on ND trees of both species
may indicate that those trees start forming xylem earlier and have an earlier onset of shoot and leaf
development than D trees [59].

However, positive growth responses of Q. canariensis to previous late summer and autumn
conditions may also indicate premature leaf withering and shoot shedding to reduce respiration
costs, consequently affecting next spring growth or causing lagged growth responses to late-winter
climate conditions [55]. This reduction in carbon gain has been linked to xylem hydraulic failure [60].
In addition, initial phenotypic or genetic differences together with site-specific soil conditions and
large belowground competition for water and nutrients between neighboring oaks could increase
the vulnerability to drought, since trees with deeper root systems are able to use different soil
water sources under drought stress [61]. For instance, variability in tree size could explain the
observed differences in growth and responses to climate in Q. frainetto and Q. canariensis, respectively.
The ring formation in Mediterranean ring-porous species is very dependent on the prior winter water
supply, and also on previous temperature and photosynthetic activity that may uncouple under
changing climate and/or in response to extreme droughts [15]. Therefore, comparative xylogenesis,
physiological and morphological studies between D and ND trees are needed to unravel the mechanisms
underlying contrasting mortality in Mediterranean drought-prone oaks forests, cf. [54]. Furthermore,
the physiological ability of oaks to cope with changing environmental conditions, including the
interaction between climate and the legacy effects of past forest management could influence the
long-term growth responses to drought [62]. Although the studied forests have not been recently
managed, their past historical use could influence the long-term responses to recent hotter droughts.
In this sense, our results allow novel knowledge to establish vulnerability thresholds to drought and
adapt management measures to improve the resilience of Mediterranean oak ecosystems, cf. [18].
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4.3. Changes in the Climatic Thresholds Leading to Forest Dieback

We found a longer dry season limitation (gM < gT) and hotter conditions (higher gT) affecting the
growth of D trees of both species several decades before the growth decline started or the climate-growth
shifts occurred. By exceeding its functional thresholds for optimum growth responses to temperature
and precipitation, trees become more vulnerable to drought as observed in Q. frainetto (Figure 7).
Differences in growth responses to climate were previously observed in other tree species [2,49,50].
Warmer spring temperature and increasing drought stress negatively impact the performance of
drought-prone Mediterranean oaks by rising water loss through leaves [5]. ND trees could form deep
and well-developed root systems in some oak species and this could explain their different growth
responses to soil moisture (gM) and a more efficient water use [61]. In D trees, the minimum temperature
threshold of growth (T1) and the temperature at which growth is not limited (T2) have increased for
both species after the 1990s as climate warmed and dried (Figure 7 and Table 3). In addition, the lowest
percentage of soil moisture under which growth is not limited (M2) was lower in summer than in
spring (Figure 6), suggesting a prominent role of spring water deficit to growth, thus experiencing
more drought stress earlier and during a longer growing season, in agreement with other observations
and projections [2,28,50]. This was particularly noticeable during warm-dry decades as the 1980s
and 1990s.

Our results showed strong long-term variations between ND and D trees regarding the functional
thresholds for optimal growth responses (gT and gM) under warmer and drier conditions (Figure 7).
In this sense, the higher evapotranspirative demand in the early growing season, when radial growth
starts, constraints the wood formation by decreasing cell turgor in the xylem and the cambium and this
effect may differ between D and ND trees [63] (Figure 7). Oaks display multiple structural strategies of
drought resistance including adjustments of the ratio of leaf area to sapwood area, shifts in carbon
allocation and storage or changes in the root system and xylem anatomy [60,64]. For instance, to avoid
excessive negative water potential during the driest season, Q. canariensis and Q. frainetto can modify
their hydraulic system when exposed to dry conditions towards smaller and less numerous earlywood
vessels but increasing the density of latewood vessels [5,14,26,65]. However, poor xylem plasticity or
acclimation to rapid temperature rises during the last decades have been evidenced as a characteristic
in oaks stands showing dieback [14,26].

Our findings agree with previous studies in Mediterranean oaks which found that D trees regulated
their water status after dry and warm seasons by premature leaf withering [60,66]. Furthermore,
anisohydric oaks species continue consuming the available nutrients and water resources and
transpiring during drought, which causes bud, leaf, and fine-root mortality leading to growth
reduction [54,67]. In this sense, D trees under warmer and drier conditions showed a low efficiency
in water use due to excessive water loss through transpiration and growth decline [14,15]. Overall,
continued growth reduction (as the one we detected in D trees) makes these individuals more susceptible
to hotter droughts, including cascading effects on water and nutrient use [2,68]. In these symptomatic
trees shifts in growth response to climate occurred decades before the onset of dieback. Our results
also suggest that lower growth rates could reflect a reduction in hydraulic conductivity and carbon
uptake [68,69]. Finally, we cannot discard that other biotic, secondary stressors as fungi, bacteria,
and insects contributed to the study dieback processes [70,71]. More insight on oak dieback could be
gained by linking long-term monitoring of forest phenology, biomass, and productivity changes with
several functioning (growth, wood anatomy) and ecophysiological proxies (e.g., stable isotopes) in
Mediterranean species [2,5,15,72].

To the extent of our knowledge, this is the first study quantifying vulnerability thresholds in oak
species based on a forward growth model. This approach allows identifying early-warning signals of
growth shifts to long-term warmer and drier conditions. Although we used a process-based growth model
and did not consider other demographic process, which should be included to model forest dynamics
(regeneration, reproduction, mortality rates; see for instance [73,74]), our approach provides robust
results in agreement with what has been observed in other analyses of oak dieback [2,5,14,15,54,61,75].
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5. Conclusions

Increasingly warmer and drier conditions during the growing season triggered dieback in two
Mediterranean oak species. The dieback was preceded by a growth divergence between declining
and non-declining trees. This divergence occurred during dry and warm decades as the 1980s
and 1990s. By using a process-based growth model we found that changes in the seasonal timing
of soil water limitation triggered the long-term growth decline in trees showing higher crown
defoliation. Our approach allows identifying early-warning signals of tree vulnerability by calculating
growth thresholds and by quantifying shifts in the growth responses to long-term climate conditions.
The presented results suggest a higher vulnerability of Mediterranean ring-porous, winter-deciduous
oaks forests under projected climate warming scenarios.
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