43 research outputs found
Clinical evaluation of an over-the-counter hearing aid (TEO First®) in elderly patients suffering of mild to moderate hearing loss
An M dwarf accompanied by a close-in giant orbiter with SPECULOOS
In the last decade, a dozen close-in giant planets have been discovered
orbiting stars with spectral types ranging from M0 to M4, a mystery since known
formation pathways do not predict the existence of such systems. Here, we
confirm TOI-4860 b, a Jupiter-sized planet orbiting an M4.5 host, a star at the
transition between fully and partially convective interiors. First identified
with TESS data, we validate the transiting companion's planetary nature through
multicolour photometry from the TRAPPIST-South/North, SPECULOOS, and MuSCAT3
facilities. Our analysis yields a radius of for
the planet, a mass of for the star, and an orbital period of
1.52 d. Using the newly commissioned SPIRIT InGaAs camera at the
SPECULOOS-South Observatory, we collect infrared photometry in zYJ that spans
the time of secondary eclipse. These observations do not detect a secondary
eclipse, placing an upper limit on the brightness of the companion. The
planetary nature of the companion is further confirmed through high-resolution
spectroscopy obtained with the IRD spectrograph at Subaru Telescope, from which
we measure a mass of . Based on its overall
density, TOI-4860 b appears to be rich in heavy elements, like its host star.Comment: Accepted for publication in MNRAS Letter
TOI-4336 A b:A temperate sub-Neptune ripe for atmospheric characterization in a nearby triple M-dwarf system
Small planets transiting bright nearby stars are essential to our understanding of the formation and evolution of exoplanetary systems. However, few constitute prime targets for atmospheric characterization, and even fewer are part of multiple star systems. This work aims to validate TOI-4336 A b, a sub-Neptune-sized exoplanet candidate identified by the TESS space-based transit survey around a nearby M-dwarf. We validate the planetary nature of TOI-4336 A b through the global analysis of TESS and follow-up multi-band high-precision photometric data from ground-based telescopes, medium- and high-resolution spectroscopy of the host star, high-resolution speckle imaging, and archival images. The newly discovered exoplanet TOI-4336 A b has a radius of 2.1±0.1R⊕. Its host star is an M3.5-dwarf star of mass 0.33±0.01M⊙ and radius 0.33±0.02R⊙ member of a hierarchical triple M-dwarf system 22 pc away from the Sun. The planet's orbital period of 16.3 days places it at the inner edge of the Habitable Zone of its host star, the brightest of the inner binary pair. The parameters of the system make TOI-4336 A b an extremely promising target for the detailed atmospheric characterization of a temperate sub-Neptune by transit transmission spectroscopy with JWST
A transiting giant planet in orbit around a 0.2-solar-mass host star
Planet formation models suggest that the formation of giant planets is significantly harder around low-mass stars, due to the scaling of protoplanetary disc masses with stellar mass. The discovery of giant planets orbiting such low-mass stars thus imposes strong constraints on giant planet formation processes. Here, we report the discovery of a transiting giant planet orbiting a 0.207± 0.011 M⊗ star. The planet, TOI-6894 b, has a mass and radius of MP = 0.168 ± 0.022 MJ (53.4 ± 7.1 M⊕) and RP = 0.855 ± 0.022 RJ, and likely includes 12 ± 2 M⊕ of metals. The discovery of TOI-6894 b highlights the need for a better understanding of giant planet formation mechanisms and the protoplanetary disc environments in which they occur. The extremely deep transits (17% depth) make TOI-6894 b one of the most accessible exoplanetary giants for atmospheric characterisation observations, which will be key for fully interpreting the formation history of this remarkable system and for the study of atmospheric methane chemistry
Precise near-infrared photometry, accounting for precipitable water vapour at SPECULOOS Southern Observatory
peer reviewedAbstract
The variability induced by precipitable water vapour (PWV) can heavily affect the accuracy of time-series photometric measurements gathered from the ground, especially in the near-infrared. We present here a novel method of modelling and mitigating this variability, as well as open-sourcing the developed tool – Umbrella. In this study, we evaluate the extent to which the photometry in three common bandpasses (r′, i′, z′), and SPECULOOS’ primary bandpass (I+z′), are photometrically affected by PWV variability. In this selection of bandpasses, the I+z′ bandpass was found to be most sensitive to PWV variability, followed by z′, i′, and r′. The correction was evaluated on global light curves of nearby late M- and L-type stars observed by SPECULOOS’ Southern Observatory (SSO) with the I+z′ bandpass, using PWV measurements from the LHATPRO and local temperature/humidity sensors. A median reduction in RMS of 1.1 per cent was observed for variability shorter than the expected transit duration for SSO’s targets. On timescales longer than the expected transit duration, where long-term variability may be induced, a median reduction in RMS of 53.8 per cent was observed for the same method of correction
A large sub-Neptune transiting the thick-disk M4 V TOI-2406
We thank the anonymous referee for their corrections and help in improving the paper. We warmly thank the entire technical staff of the Observatorio Astronomico Nacional at San Pedro Martir in Mexico for their unfailing support to SAINT-EX operations, namely: E. Cadena, T. Calvario, E. Colorado, B. Garcia, G. Guisa, A. Franco, L. Figueroa, B. Hernandez, J. Herrera, E. Lopez, E. Lugo, B. Martinez, J. M. Nunez, J. L. Ochoa, M. Pereyra, F. Quiroz, T. Verdugo, I. Zavala. B.V.R. thanks the Heising-Simons Foundation for support. Y.G.M.C acknowledges support from UNAM-PAPIIT IG-101321. B.-O. D. acknowledges support from the Swiss National Science Foundation (PP00P2-163967 and PP00P2-190080). R.B. acknowledges the support from the Swiss National Science Foundation under grant P2BEP2_195285. M.N.G. acknowledges support from MIT's Kavli Institute as a Juan Carlos Torres Fellow. A.H.M.J.T acknowledges funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement nffi 803193/BEBOP), from the MERAC foundation, and from the Science and Technology Facilities Council (STFC; grant nffi ST/S00193X/1). T.D. acknowledges support from MIT's Kavli Institute as a Kavli postdoctoral fellow Part of this work received support from the National Centre for Competence in Research PlanetS, supported by the Swiss National Science Foundation (SNSF). The research leading to these results has received funding from the ARC grant for Concerted Research Actions, financed by the Wallonia-Brussels Federation. TRAPPIST is funded by the Belgian Fund for Scientific Research (Fond National de la Recherche Scientifique, FNRS) under the grant FRFC 2.5.594.09.F, with the participation of the Swiss National Science Fundation (SNF). M.G. and E.J. are F.R.S.-FNRS Senior Research Associate. This publication benefits from the support of the French Community of Belgium in the context of the FRIA Doctoral Grant awarded to MT. We acknowledge the use of public TESS data from pipelines at the TESS Science Office and at the TESS Science Processing Operations Center. We acknowledge the use of public TESS Alert data from pipelines at the TESS Science Office and at the TESS Science Processing Operations Center. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center for the production of the SPOC data products. Funding for the TESS mission is provided by NASA's Science Mission Directorate. This research has made use of the Exoplanet Follow-up Observation Program website, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program. This paper includes data collected by the TESS mission that are publicly available from the Mikulski Archive for Space Telescopes (MAST). We thank the TESS GI program G03274 PI, Ryan Cloutier, for proposing the target of this work for 2-min-cadence observations in Sector 30. This work is based upon observations carried out at the Observatorio Astronomico Nacional on the Sierra de San Pedro Martir (OAN-SPM), Baja California, Mexico. This work makes use of observations from the LCOGT network. Part of the LCOGT telescope time was granted by NOIRLab through the Mid-Scale Innovations Program (MSIP). MSIP is funded by NSF. This work includes data collected at the Vatican Advanced Technology Telescope (VATT) on Mt. Graham.
This paper includes data taken on the EDEN telescope network. We acknowledge support from the Earths in Other Solar Systems Project (EOS) and Alien Earths (grant numbers NNX15AD94G and 80NSSC21K0593), sponsored by NASA. Some of the observations in the paper made use of the High-Resolution Imaging instrument Zorro (Gemini program GS-2020B-LP-105). Zorro was funded by the NASA Exoplanet Exploration Program and built at the NASA Ames Research Center by Steve B. Howell, Nic Scott, Elliott P. Horch, and Emmett Quigley. Zorro was mounted on the Gemini South telescope of the international Gemini Observatory, a program of NSF's OIR Lab, which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. on behalf of the Gemini partnership: the National Science Foundation (United States), National Research Council (Canada), Agencia Nacional de Investigacion y Desarrollo (Chile), Ministerio de Ciencia, Tecnologia e Innovacion (Argentina), Ministerio da Ciencia, Tecnologia, Inovacoes e Comunicacoes (Brazil), and Korea Astronomy and Space Science Institute (Republic of Korea). This research has made use of the NASA Exoplanet Archive, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program. This work made use of the following Python packages: astropy (Astropy Collaboration 2013, 2018), lightkurve (Lightkurve Collaboration 2018), matplotlib (Hunter 2007), pandas (Wes McKinney 2010), seaborn (Waskom & The Seaborn Development team 2021), scipy (Virtanen et al. 2020) and numpy (Harris et al. 2020).Context. Large sub-Neptunes are uncommon around the coolest stars in the Galaxy and are rarer still around those that are metal-poor. However, owing to the large planet-to-star radius ratio, these planets are highly suitable for atmospheric study via transmission spectroscopy in the infrared, such as with JWST. Aims. Here we report the discovery and validation of a sub-Neptune orbiting the thick-disk, mid-M dwarf star TOI-2406. The star's low metallicity and the relatively large size and short period of the planet make TOI-2406 b an unusual outcome of planet formation, and its characterisation provides an important observational constraint for formation models. Methods. We first infer properties of the host star by analysing the star's near-infrared spectrum, spectral energy distribution, and Gaia parallax. We use multi-band photometry to confirm that the transit event is on-target and achromatic, and we statistically validate the TESS signal as a transiting exoplanet. We then determine physical properties of the planet through global transit modelling of the TESS and ground-based time-series data. Results. We determine the host to be a metal-poor M4 V star, located at a distance of 56 pc, with properties T-eff = 3100 +/- 75 K, M-* = 0.162 +/- 0.008M(circle dot), R-* = 0.202 +/- 0.011R(circle dot), and [Fe/H] = -0.38 +/- 0.07, and a member of the thick disk. The planet is a relatively large sub-Neptune for the M-dwarf planet population, with R-p = 2.94 +/- 0.17R(circle plus) and P= 3.077 d, producing transits of 2% depth. We note the orbit has a non-zero eccentricity to 3 sigma, prompting questions about the dynamical history of the system. Conclusions. This system is an interesting outcome of planet formation and presents a benchmark for large-planet formation around metal-poor, low-mass stars. The system warrants further study, in particular radial velocity follow-up to determine the planet mass and constrain possible bound companions. Furthermore, TOI-2406 b is a good target for future atmospheric study through transmission spectroscopy. Although the planet's mass remains to be constrained, we estimate the S/N using amass-radius relationship, ranking the system fifth in the population of large sub-Neptunes, with TOI-2406 b having a much lower equilibrium temperature than other spectroscopically accessible members of this population.Heising-Simons FoundationPrograma de Apoyo a Proyectos de Investigacion e Innovacion Tecnologica (PAPIIT)Universidad Nacional Autonoma de Mexico IG-101321Swiss National Science Foundation (SNSF)European Commission PP00P2-163967
PP00P2-190080
P2BEP2_195285MIT's Kavli Institute as a Juan Carlos Torres FellowEuropean Research Council (ERC) nffi 803193/BEBOPMERAC foundationUK Research & Innovation (UKRI)Science & Technology Facilities Council (STFC)Science and Technology Development Fund (STDF) nffi ST/S00193X/1MIT's Kavli Institute as a Kavli postdoctoral fellowSwiss National Science Foundation (SNSF)Australian Research CouncilFonds de la Recherche Scientifique - FNRS FRFC 2.5.594.09.FSwiss National Science Foundation (SNSF)French Community of Belgium in the context of the FRIA Doctoral GrantNASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research CenterNASA's Science Mission DirectorateNational Aeronautics and Space Administration under the Exoplanet Exploration ProgramTESS GI program G03274National Science Foundation (NSF)Earths in Other Solar Systems Project (EOS)Alien Earths - NASA NNX15AD94G
80NSSC21K0593High-Resolution Imaging instrument Zorro (Gemini program) GS-2020B-LP-105NASA Exoplanet Exploration ProgramNational Aeronautics & Space Administration (NASA)National Science Foundation (NSF
An extended low-density atmosphere around the Jupiter-sized planet WASP-193 b
Gas giants transiting bright nearby stars provide crucial insights into planetary system formation and evolution mechanisms. Most of these planets show certain average characteristics, serving as benchmarks for our understanding of planetary systems. However, outliers like the planet we present in this study, WASP-193 b, offer unique opportunities to explore unconventional formation and evolution processes. This planet completes an orbit around its V-band-magnitude 12.2 F9 main-sequence host star every 6.25 days. Our analyses found that WASP-193 b has a mass of 0.139 +/- 0.029 M-J and a radius of 1.464 +/- 0.058 R-J, translating into an extremely low density of 0.059 +/- 0.014g cm(-3), at least one order of magnitude less than standard gas giants like Jupiter. Typical gas giants such as Jupiter have densities that range between 0.2 g cm(-3) and 2 g cm(-3). The combination of its large transit depth (1.4%), extremely low density, high-equilibrium temperature (1,254 +/- 31 K) and the infrared brightness of its host star (K-band magnitude 10.7) makes WASP-193 b an exquisite target for characterization by transmission spectroscopy (transmission spectroscopy metric similar to 600). One single JWST transit observation would yield detailed insights into its atmospheric properties and planetary mass, providing a unique window to explore the mechanisms behind its exceptionally low density and shed light on giant planets' diverse nature
