59 research outputs found

    Глухівська організація РУП-УСДРП та її література

    Get PDF
    Despite many claims of functional reorganization following tumour surgery, empirical studies that investigate changes in functional activation patterns are rare. This study investigates whether functional recovery following surgical treatment in patients with a low-grade glioma in the left hemisphere is linked to inter-hemispheric reorganization. Based on literature, we hypothesized that reorganization would induce changes in the spatial pattern of activation specifically in tumour homologue brain areas in the healthy right hemisphere. An experimental group (EG) of 14 patients with a glioma in the left hemisphere near language related brain areas, and a control group of 6 patients with a glioma in the right, non-language dominant hemisphere were scanned before and after resection. In addition, an age and gender matched second control group of 18 healthy volunteers was scanned twice. A verb generation task was used to map language related areas and a novel technique was used for data analysis. Contrary to our hypothesis, we found that functional recovery following surgery of low-grade gliomas cannot be linked to functional reorganization in language homologue brain areas in the healthy, right hemisphere. Although elevated changes in the activation pattern were found in patients after surgery, these were largest in brain areas in proximity to the surgical resection, and were very similar to the spatial pattern of the brain shift following surgery. This suggests that the apparent perilesional functional reorganization is mostly caused by the brain shift as a consequence of surgery. Perilesional functional reorganization can however not be excluded. The study suggests that language recovery after transient post-surgical language deficits involves recovery of functioning of the presurgical language system. Keywords: Language, Functional reorganization, Variability, Low-grade glioma, Surger

    Retinotopic Mapping of Categorical and Coordinate Spatial Relation Processing in Early Visual Cortex

    Get PDF
    Spatial relations are commonly divided in two global classes. Categorical relations concern abstract relations which define areas of spatial equivalence, whereas coordinate relations are metric and concern exact distances. Categorical and coordinate relation processing are thought to rely on at least partially separate neurocognitive mechanisms, as reflected by differential lateralization patterns, in particular in the parietal cortex. In this study we address this textbook principle from a new angle. We studied retinotopic activation in early visual cortex, as a reflection of attentional distribution, in a spatial working memory task with either a categorical or a coordinate instruction. Participants were asked to memorize a dot position, with regard to a central cross, and to indicate whether a subsequent dot position matched the first dot position, either categorically (opposite quadrant of the cross) or coordinately (same distance to the centre of the cross). BOLD responses across the retinotopic maps of V1, V2, and V3 indicate that the spatial distribution of cortical activity was different for categorical and coordinate instructions throughout the retention interval; a more local focus was found during categorical processing, whereas focus was more global for coordinate processing. This effect was strongest for V3, approached significance in V2 and was absent in V1. Furthermore, during stimulus presentation the two instructions led to different levels of activation in V3 during stimulus encoding; a stronger increase in activity was found for categorical processing. Together this is the first demonstration that instructions for specific types of spatial relations may yield distinct attentional patterns which are already reflected in activity early in the visual cortex

    Knowing left from right : asymmetric functional connectivity during resting state

    No full text
    The functional organization of left and right hemispheres is different, and hemispheric asymmetries are thought to underlie variations in brain function across individuals. In this study, we assess how differences between hemispheres are reflected in Asymmetric Functional Connectivity (AFC), which provides a full description of how the brain's connectivity structure during resting state differs from that of the same brain mirrored over the longitudinal fissure. In addition, we assess how AFC varies across subjects. Data were provided by the Human Connectome Project, including 423 resting state and combined language task fMRI data sets, and the pattern of AFC was established for all subjects. While we could quantify the symmetry of brain connectivity at 95%, significant asymmetries were observed, consisting foremost of: (1) higher correlations between language areas in the left hemisphere than between their right hemisphere homologues. (2) Higher correlations between language homologue areas in the right hemisphere and left default mode network, than between language areas in the left hemisphere and the default mode network in the right hemisphere. The extent to which subjects exhibited this pattern correlated with language lateralization and handedness. Further exploration in intersubject variation in AFC revealed several additional patterns, one involving entire hemispheres, and another correlations with limbic areas. These results show that language is an important, but not only determinant of AFC. The additional patterns of AFC require further research to be linked to specific asymmetric neuronal states or events

    Knowing left from right : asymmetric functional connectivity during resting state

    No full text
    The functional organization of left and right hemispheres is different, and hemispheric asymmetries are thought to underlie variations in brain function across individuals. In this study, we assess how differences between hemispheres are reflected in Asymmetric Functional Connectivity (AFC), which provides a full description of how the brain's connectivity structure during resting state differs from that of the same brain mirrored over the longitudinal fissure. In addition, we assess how AFC varies across subjects. Data were provided by the Human Connectome Project, including 423 resting state and combined language task fMRI data sets, and the pattern of AFC was established for all subjects. While we could quantify the symmetry of brain connectivity at 95%, significant asymmetries were observed, consisting foremost of: (1) higher correlations between language areas in the left hemisphere than between their right hemisphere homologues. (2) Higher correlations between language homologue areas in the right hemisphere and left default mode network, than between language areas in the left hemisphere and the default mode network in the right hemisphere. The extent to which subjects exhibited this pattern correlated with language lateralization and handedness. Further exploration in intersubject variation in AFC revealed several additional patterns, one involving entire hemispheres, and another correlations with limbic areas. These results show that language is an important, but not only determinant of AFC. The additional patterns of AFC require further research to be linked to specific asymmetric neuronal states or events

    Investigating secondary white matter degeneration following ischemic stroke by modelling affected fiber tracts

    No full text
    Secondary white matter degeneration is a common occurrence after ischemic stroke, as identified by Diffusion Tensor Imaging (DTI). However, despite recent advances, the time course of the process is not completely understood. The primary aim of this study was to assess secondary degeneration using an approach whereby we create a patient-specific model of damaged fibers based on the volumetric characteristics of lesions. We also examined the effects of secondary degeneration along the modelled streamlines at different distances from the primary infarction using DTI. Eleven patients who presented with upper limb motor deficits at the time of a first-ever ischemic stroke were included. They underwent scanning at weeks 6 and 29 post-stroke. The fractional anisotropy (FA), mean diffusivity (MD), primary eigenvalue (λ1), and transverse eigenvalue (λ23) were measured. Using regions of interest based on the simulation output, the differences between the modelled fibers and matched contralateral areas were analyzed. The longitudinal change between the two time points and across five distances from the primary lesion was also assessed using the ratios of diffusion quantities (rFA, rMD, rλ1, and rλ23) between the ipsilesional and contralesional hemisphere. At week 6 post-stroke, significantly decreased λ1 was found along the ipsilesional corticospinal tract (CST) with a trend towards lower FA, reduced MD and λ23. At week 29 post-stroke, significantly decreased FA was shown relative to the non-lesioned side, with a trend towards lower λ1, unchanged MD, and higher λ23. Along the ipsilesional tract, the rFA diminished, whereas the rMD, rλ1, and rλ23 significantly increased over time. No significant variations in the time progressive effect with distance were demonstrated. The findings support previously described mechanisms of secondary degeneration and suggest that it spreads along the entire length of a damaged tract. Future investigations using higher-order tractography techniques can further explain the intravoxel alterations caused by ischemic injury

    Predictive coding for motion stimuli in human early visual cortex

    Get PDF
    The current study investigates if early visual cortical areas, V1, V2 and V3, use predictive coding to process motion information. Previous studies have reported biased visual motion responses at locations where novel visual information was presented (i.e., the motion trailing edge), which is plausibly linked to the predictability of visual input. Using high-field functional magnetic resonance imaging (fMRI), we measured brain activation during predictable versus unpreceded motion-induced contrast changes during several motion stimuli. We found that unpreceded moving dots appearing at the trailing edge gave rise to enhanced BOLD responses, whereas predictable moving dots at the leading edge resulted in suppressed BOLD responses. Furthermore, we excluded biases in directional sensitivity, shifts in cortical stimulus representation, visuo-spatial attention and classical receptive field effects as viable alternative explanations. The results clearly indicate the presence of predictive coding mechanisms in early visual cortex for visual motion processing, underlying the construction of stable percepts out of highly dynamic visual input

    Directional anisotropy of motion responses in retinotopic cortex

    No full text
    Recently, evidence has emerged for a radial orientation bias in early visual cortex. These results predict that in early visual cortex a tangential bias should be present for motion direction. We tested this prediction in a human imaging study, using a translating random dot pattern that slowly rotated its motion direction 360° in cycles of 54 s. In addition, polar angle and eccentricity mapping were performed. This allowed the measurement of the BOLD response across the visual representations of the different retinotopic areas. We found that, in V1, V2, and V3, BOLD responses were consistently enhanced for centrifugal and centripetal motion, relative to tangential motion. The relative magnitude of the centrifugal and centripetal response biases changed with visual eccentricity. We found no motion direction biases in MT+. These results are in line with previously observed anisotropies in motion sensitivity across the visual field. However, the observation of radial motion biases in early visual cortex is surprising considering the evidence for a radial orientation bias. An additional experiment was performed to resolve this apparent conflict in results. The additional experiment revealed that the observed motion direction biases most likely originate from anisotropies in long range horizontal connections within visual cortex.</p

    Brain activation during antisaccades in unaffected relatives of schizophrenic patients

    No full text
    Background: Schizophrenia patients have difficulty inhibiting automatic saccades. Many studies have failed to resolve whether healthy first-degree relatives share the same deficit. Measures of brain activity may be more sensitive than behavioral measures. In patients, the saccadic inhibition deficit has been related to impaired frontostriatal functioning. This study attempts to establish whether this abnormality is also present in unaffected relatives of patients. Methods: Functional brain images were acquired during prosaccades and antisaccades in 16 control subjects and 16 unaffected siblings of schizophrenia patients using an event-related functional magnetic resonance imaging design. Eye movements were measured during scanning. Results: The task activated a network of regions corresponding to the oculomotor system. Siblings and control subjects did not differ during execution of prosaccades. During antisaccades, siblings did not activate the caudate nucleus. Siblings and control subjects did not differ on the percentage of antisaccade errors. Conclusions: Siblings did not appropriately activate the striatum during antisaccades, similar to what has been reported in patients. Siblings, however, did not make significantly more errors during antisaccades, indicating that they were able to compensate for the inactive caudate. Future research is needed to assess the potential of this striatal deficit as (genetic) risk factor for schizophrenia

    Implied motion activation in cortical area MT can be explained by visual low-level features

    Get PDF
    To investigate form-related activity inmotion-sensitive cortical areas, we recorded cell responses to animate implied motion in macaque middle temporal (MT) and medial superior temporal (MST) cortex and investigated these areas using fMRI in humans. In the single-cell studies, we compared responses with static images of human or monkey figures walking or running left or right with responses to the same human and monkey figures standing or sitting still. We also investigated whether the view of the animate figure (facing left or right) that elicited the highest response was correlated with the preferred direction for moving random dot patterns. First, figures were presented inside the cell's receptive field. Subsequently, figures were presented at the fovea while a dynamic noise pattern was presented at the cell's receptive field location. The results show that MT neurons did not discriminate between figures on the basis of the implied motion content. Instead, response preferences for implied motion correlated with preferences for low-level visual features such as orientation and size. No correlation was found between the preferred view of figures implying motion and the preferred direction for moving random dot patterns. Similar findings were obtained in a smaller population of MST cortical neurons. Testing human MT+ responses with fMRI further corroborated the notion that low-level stimulus features might explain implied motion activation in human MT+. Together, these results suggest that prior human imaging studies demonstrating animate implied motion processing in area MT+ can be best explained by sensitivity for low-level features rather than sensitivity for the motion implied by animate figures.Publisher PDFPeer reviewe
    corecore