39 research outputs found

    Genetic diversity of Plasmodium falciparum infection among children with uncomplicated malaria living in Pointe-Noire, Republic of Congo

    Get PDF
    Introduction: molecular characterization of malaria parasites from different localities is important to improve understanding of acquisition of natural immunity to Plasmodium falciparum, to assist in identifying the most appropriate strategies for control and to evaluate the impact of control interventions. This study aimed to determine the genetic diversity and the multiplicity of infection in Plasmodium falciparum isolates from Pointe-Noire, Republic of Congo. Methods: Plasmodium falciparum isolates were collected from 71 children with uncomplicated malaria; enrolled into the study for evaluating the therapeutic efficacy of artemether-lumefantrine combination. Both msp-1 and msp-2 genes were genotyped. Results: from 296 distinct fragments detected, 13 msp-1 and 27 msp-2 different alleles were identified. For msp-1, RO33 family was poorly polymorphic. The K1 family has shown the trend of predominance (41%), followed by Mad20 (35%). Comparatively to msp-2, 49.6% and 48.8% fragments belonged to 3D7 and FC27 respectively. Taking together msp-1 and msp-2 genes, the overall multiplicity of infection has been increased to 2.64 and 86% harbored more than one parasite genotype. Parasite density was not influenced by age as well as the multiplicity of infection which was not influenced neither by age nor by parasite density. Conclusion: genetic diversity of Plasmodium falciparum in isolates from patients with uncomplicated malaria in Pointe-Noire is high and consisted mainly of multiple clones. The overall multiplicity of infection has been largely increased when considering msp-1 and msp-2 genes together. With the changes in malaria epidemiology, the use of both msp-1 and msp-2 genes in the characterization of Plasmodium falciparum infection is recommended

    Genetic polymorphism of merozoite surface protein 2 and prevalence of K76T pfcrt mutation in Plasmodium falciparum field isolates from Congolese children with asymptomatic infections

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In order to prepare the field site for future interventions, the prevalence of asymptomatic <it>Plasmodium falciparum </it>infection was evaluated in a cohort of children living in Brazzaville. <it>Plasmodium falciparum </it>merozoite surface protein 2 gene (<it>msp</it>2) was used to characterize the genetic diversity and the multiplicity of infection. The prevalence of mutant <it>P. falciparum </it>chloroquine resistance transporter (<it>pfcrt</it>) allele in isolates was also determined.</p> <p>Methods</p> <p>Between April and June 2010, 313 children below 10 years of age enrolled in the cohort for malaria surveillance were screened for <it>P. falciparum </it>infection using microscopy and polymerase chain reaction (PCR). The children were selected on the basis of being asymptomatic. <it>Plasmodium falciparum msp2 </it>gene was genotyped by allele-specific nested PCR and the <it>pfcrt </it>K76T mutation was detected using nested PCR followed by restriction endonuclease digestion.</p> <p>Results</p> <p>The prevalence of asymptomatic <it>P. falciparum </it>infections was 8.6% and 16% by microscopy and by PCR respectively. Allele typing of the <it>msp2 </it>gene detected 55% and 45% of 3D7 and FC27 allelic families respectively. The overall multiplicity of infections (MOI) was 1.3. A positive correlation between parasite density and multiplicity of infection was found. The prevalence of the mutant <it>pfcrt </it>allele (T76) in the isolates was 92%.</p> <p>Conclusion</p> <p>This is the first molecular characterization of <it>P. falciparum </it>field isolates in Congolese children, four years after changing the malaria treatment policy from chloroquine (CQ) to artemisinin-based combination therapy (ACT). The low prevalence of asymptomatic infections and MOI is discussed in the light of similar studies conducted in Central Africa.</p

    European and Developing Countries Clinical Trials Partnership (EDCTP): the path towards a true partnership

    Get PDF
    European and Developing Countries Clinical Trials Partnership (EDCTP) was founded in 2003 by the European Parliament and Council. It is a partnership of 14 European Union (EU) member states, Norway, Switzerland, and Developing Countries, formed to fund acceleration of new clinical trial interventions to fight the human immunodeficiency virus and acquired immune deficiency syndrome (HIV/AIDS), malaria and tuberculosis (TB) in the sub-Saharan African region. EDCTP seeks to be synergistic with other funding bodies supporting research on these diseases. EDCTP promotes collaborative research supported by multiple funding agencies and harnesses networking expertise across different African and European countries. EDCTP is different from other similar initiatives. The organisation of EDCTP blends important aspects of partnership that includes ownership, sustainability and responds to demand-driven research. The Developing Countries Coordinating Committee (DCCC); a team of independent scientists and representatives of regional health bodies from sub-Saharan Africa provides advice to the partnership. Thus EDCTP reflects a true partnership and the active involvement and contribution of these African scientists ensures joint ownership of the EDCTP programme with European counterparts. The following have been the major achievements of the EDCTP initiative since its formation in 2003; i) increase in the number of participating African countries from two to 26 in 2008 ii) the cumulative amount of funds spent on EDCTP projects has reached 150 m euros, iii) the cumulative number of clinical trials approved has reached 40 and iv) there has been a significant increase number and diversity in capacity building activities. While we recognise that EDCTP faced enormous challenges in its first few years of existence, the strong involvement of African scientists and its new initiatives such as unconditional funding to regional networks of excellence in sub-Saharan Africa is envisaged to lead to a sustainable programme. Current data shows that the number of projects supported by EDCTP is increasing. DCCC proposes that this success story of true partnership should be used as model by partners involved in the fight against other infectious diseases of public health importance in the region

    Plasmodium falciparum: Differential Selection of Drug Resistance Alleles in Contiguous Urban and Peri-Urban Areas of Brazzaville, Republic of Congo

    Get PDF
    The African continent is currently experiencing rapid population growth, with rising urbanization increasing the percentage of the population living in large towns and cities. We studied the impact of the degree of urbanization on the population genetics of Plasmodium falciparum in urban and peri-urban areas in and around the city of Brazzaville, Republic of Congo. This field setting, which incorporates local health centers situated in areas of varying urbanization, is of interest as it allows the characterization of malaria parasites from areas where the human, parasite, and mosquito populations are shared, but where differences in the degree of urbanization (leading to dramatic differences in transmission intensity) cause the pattern of malaria transmission to differ greatly. We have investigated how these differences in transmission intensity affect parasite genetic diversity, including the amount of genetic polymorphism in each area, the degree of linkage disequilibrium within the populations, and the prevalence and frequency of drug resistance markers. To determine parasite population structure, heterozygosity and linkage disequilibrium, we typed eight microsatellite markers and performed haplotype analysis of the msp1 gene by PCR. Mutations known to be associated with resistance to the antimalarial drugs chloroquine and pyrimethamine were determined by sequencing the relevant portions of the crt and dhfr genes, respectively. We found that parasite genetic diversity was comparable between the two sites, with high levels of polymorphism being maintained in both areas despite dramatic differences in transmission intensity. Crucially, we found that the frequencies of genetic markers of drug resistance against pyrimethamine and chloroquine differed significantly between the sites, indicative of differing selection pressures in the two areas

    Failure to detect Plasmodium vivax in West and Central Africa by PCR species typing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Plasmodium vivax </it>is estimated to affect 75 million people annually. It is reportedly absent, however, from west and central Africa due to the high prevalence of the Duffy negative phenotype in the indigenous populations. Despite this, non-African travellers consistently return to their own countries with <it>P. vivax </it>malaria after visiting this region. An attempt was made, therefore, to detect the presence of <it>P. vivax </it>parasites in blood samples collected from the indigenous populations of west and central Africa.</p> <p>Methods</p> <p>Parasite species typing (for all four human malaria parasites) was carried out by PCR on 2,588 blood samples collected from individuals from nine African malaria-endemic countries.</p> <p>Results</p> <p>Most infections (98.5%) were <it>Plasmodium falciparum</it>, <it>Plasmodium malariae </it>was identified in 8.5% of all infections, and <it>Plasmodium ovale </it>in 3.9%. The prevalence of both parasites varied greatly by country. Only one case of <it>P. vivax </it>was detected from Sao Tome, an island off the west coast of Africa, confirming the scarcity of this parasite in Africa.</p> <p>Conclusion</p> <p>The prevalence of <it>P. vivax </it>in local populations in sub-Saharan Africa is very low, despite the frequent identification of this parasite in non-African travellers.</p

    Genetic polymorphism of merozoite surface protein-1 and merozoite surface protein-2 in <it>Plasmodium falciparum </it>isolates from Brazzaville, Republic of Congo

    No full text
    Abstract Background The characterization of malaria parasite populations circulating in an area is part of site characterization, as a basis for evaluating the impact of malaria interventions on genetic diversity, parasite species, and multiplicity of infection. The present study was aimed at analysing genetic diversity of Plasmodium falciparum merozoite surface proteins 1 and 2 (MSP-1 and MSP-2) and to determine the multiplicity of infection in clinical isolates collected from children living in the Southern district of Brazzaville in the Republic of Congo. Methods A total of 125 isolates from patients with uncomplicated malaria attending Terinkyo and Madibou health centres were collected between January and June 2005 while evaluating the therapeutic efficacy of amodiaquine-artesunate combination. DNA was extracted and msp-1 and msp-2 genes were genotyped using allele-specific nested-PCR. Results Out of 468 distinct fragments detected, 15 msp-1 and 20 msp-2 genotypes were identified. For the msp-1 gene, K1 family was the predominant allelic type carried alone or in association with RO33 and Mad20 types, whereas the 3D7 family was the most prevalent in the msp-2 gene. Overall, the mean multiplicity of infection was 2.2. Out of 125 samples, 104 (83%) harboured more than one parasite genotype. There was no statistical significant difference in the multiplicity of infection by either sex or age of patients. However, a statistically significant correlation was found between parasite densities and the number of genotypes. Conclusion Polymorphism in P. falciparum clinical isolates from Brazzaville was high and mainly of multiple clones. The basis for the positive association between parasite densities and multiplicity of infection is discussed.</p
    corecore