64 research outputs found

    Hyperspectral imaging of cuttlefish camouflage indicates good color match in the eyes of fish predators

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences of the United States of America 108 (2011):9148-9153, doi:10.1073/pnas.1019090108.Camouflage is a widespread phenomenon throughout nature and an important anti-predator tactic in natural selection. Many visual predators have keen color perception, thus camouflage patterns should provide some degree of color matching in addition to other visual factors such as pattern, contrast, and texture. Quantifying camouflage effectiveness in the eyes of the predator is a challenge from the perspectives of both biology and optical imaging technology. Here we take advantage of Hyperspectral Imaging (HSI), which records full-spectrum light data, to simultaneously visualize color match and pattern match in the spectral and the spatial domains, respectively. Cuttlefish can dynamically camouflage themselves on any natural substrate and, despite their colorblindness, produce body patterns that appear to have high-fidelity color matches to the substrate when viewed directly by humans or with RGB images. Live camouflaged cuttlefish on natural backgrounds were imaged using HSI, and subsequent spectral analysis revealed that most reflectance spectra of individual cuttlefish and substrates were similar, rendering the color match possible. Modeling color vision of potential di- and tri-chromatic fish predators of cuttlefish corroborated the spectral match analysis and demonstrated that camouflaged cuttlefish show good color match as well as pattern match in the eyes of fish predators. These findings (i) indicate the strong potential of HSI technology to enhance studies 3 of biological coloration, and (ii) provide supporting evidence that cuttlefish can produce color-coordinated camouflage on natural substrates despite lacking color vision.We gratefully acknowledge financial support from the National Science Council of Taiwan NSC-98-2628-B-007-001-MY3 to CCC, from the Network Science Center at West Point and the Army Research Office to JKW, from the NDSEG Fellowship to JJA, and from ONR grant N000140610202 to RTH

    Quantification of cuttlefish (Sepia officinalis) camouflage : a study of color and luminance using in situ spectrometry

    Get PDF
    Author Posting. © The Author(s), 2012. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Journal of Comparative Physiology A 199 (2013): 211-225, doi:10.1007/s00359-012-0785-3.Cephalopods are renowned for their ability to adaptively camouflage on diverse backgrounds. Sepia officinalis camouflage body patterns have been characterized spectrally in the laboratory but not in the field due to the challenges of dynamic natural light fields and the difficulty of using spectrophotometric instruments underwater. To assess cuttlefish color match in their natural habitats, we studied the spectral properties of S. officinalis and their backgrounds on the Aegean coast of Turkey using point-by-point in situ spectrometry. Fifteen spectrometry datasets were collected from seven cuttlefish; radiance spectra from animal body components and surrounding substrates were measured at depths shallower than 5m. We quantified luminance and color contrast of cuttlefish components and background substrates in the eyes of hypothetical di- and trichromatic fish predators. Additionally, we converted radiance spectra to sRGB color space to simulate their in situ appearance to a human observer. Within the range of natural colors at our study site, cuttlefish closely matched the substrate spectra in a variety of body patterns. Theoretical calculations showed that this effect might be more pronounced at greater depths. We also showed that a non-biological method (“Spectral Angle Mapper”), commonly used for spectral shape similarity assessment in the field of remote sensing, shows moderate correlation to biological measures of color contrast. This performance is comparable to that of a traditional measure of spectral shape similarity, hue and chroma. This study is among the first to quantify color matching of camouflaged cuttlefish in the wild.This study was funded by ONR grant N000140610202 to RTH.2013-12-2

    Vertical visual features have a strong influence on cuttlefish camouflage

    Get PDF
    Author Posting. © Marine Biological Laboratory, 2013. This article is posted here by permission of Marine Biological Laboratory for personal use, not for redistribution. The definitive version was published in Biological Bulletin 224 (2013): 110-118.Cuttlefish and other cephalopods use visual cues from their surroundings to adaptively change their body pattern for camouflage. Numerous previous experiments have demonstrated the influence of two-dimensional (2D) substrates (e.g., sand and gravel habitats) on camouflage, yet many marine habitats have varied three-dimensional (3D) structures among which cuttlefish camouflage from predators, including benthic predators that view cuttlefish horizontally against such 3D backgrounds. We conducted laboratory experiments, using Sepia officinalis, to test the relative influence of horizontal versus vertical visual cues on cuttlefish camouflage: 2D patterns on benthic substrates were tested versus 2D wall patterns and 3D objects with patterns. Specifically, we investigated the influence of (i) quantity and (ii) placement of high-contrast elements on a 3D object or a 2D wall, as well as (iii) the diameter and (iv) number of 3D objects with high-contrast elements on cuttlefish body pattern expression. Additionally, we tested the influence of high-contrast visual stimuli covering the entire 2D benthic substrate versus the entire 2D wall. In all experiments, visual cues presented in the vertical plane evoked the strongest body pattern response in cuttlefish. These experiments support field observations that, in some marine habitats, cuttlefish will respond to vertically oriented background features even when the preponderance of visual information in their field of view seems to be from the 2D surrounding substrate. Such choices highlight the selective decision-making that occurs in cephalopods with their adaptive camouflage capability.This work was funded by the United States Department of Defense (grant number W911- NF-07-D-0001)

    Tactical decisions for changeable cuttlefish camouflage : visual cues for choosing masquerade are relevant from a greater distance than visual cues used for background matching

    Get PDF
    Author Posting. © Marine Biological Laboratory, 2015. This article is posted here by permission of Marine Biological Laboratory for personal use, not for redistribution. The definitive version was published in Biological Bulletin 229 (2015): 160-166.Cuttlefish use multiple camouflage tactics to evade their predators. Two common tactics are background matching (resembling the background to hinder detection) and masquerade (resembling an uninteresting or inanimate object to impede detection or recognition). We investigated how the distance and orientation of visual stimuli affected the choice of these two camouflage tactics. In the current experiments, cuttlefish were presented with three visual cues: 2D horizontal floor, 2D vertical wall, and 3D object. Each was placed at several distances: directly beneath (in a circle whose diameter was one body length (BL); at zero BL [(0BL); i.e., directly beside, but not beneath the cuttlefish]; at 1BL; and at 2BL. Cuttlefish continued to respond to 3D visual cues from a greater distance than to a horizontal or vertical stimulus. It appears that background matching is chosen when visual cues are relevant only in the immediate benthic surroundings. However, for masquerade, objects located multiple body lengths away remained relevant for choice of camouflage.This work was funded by DARPA/DSO grant no. W15P7T-13-D-CT04

    Defensive responses of cuttlefish to different teleost predators

    Get PDF
    Author Posting. © Marine Biological Laboratory, 2013. This article is posted here by permission of Marine Biological Laboratory for personal use, not for redistribution. The definitive version was published in Biological Bulletin 225 (2013): 161-174.We evaluated cuttlefish (Sepia officinalis) responses to three teleost predators: bluefish (Pomatomus saltatrix), summer flounder (Paralichthys dentatus), and black seabass (Centropristis striata). We hypothesized that the distinct body shapes, swimming behaviors, and predation tactics exhibited by the three fishes would elicit markedly different antipredator responses by cuttlefish. Over the course of 25 predator-prey behavioral trials, 3 primary and 15 secondary defense behaviors of cuttlefish were shown to predators. In contrast, secondary defenses were not shown during control trials in which predators were absent. With seabass—a benthic, sit-and-pursue predator—cuttlefish used flight and spent more time swimming in the water column than with other predators. With bluefish—an active, pelagic searching predator—cuttlefish remained closely associated with the substrate and relied more on cryptic behaviors. Startle (deimatic) displays were the most frequent secondary defense shown to seabass and bluefish, particularly the Dark eye ring and Deimatic spot displays. We were unable to evaluate secondary defenses by cuttlefish to flounder—a lie-and-wait predator—because flounder did not pursue cuttlefish or make attacks. Nonetheless, cuttlefish used primary defense during flounder trials, alternating between cryptic still and moving behaviors. Overall, our results suggest that cuttlefish may vary their behavior in the presence of different teleost predators: cryptic behaviors may be more important in the presence of active searching predators (e.g., bluefish), while conspicuous movements such as swimming in the water column and startle displays may be more prevalent with relatively sedentary, bottom-associated predators (e.g., seabass).This project was funded by a United States Department of Defense, Defense Advanced Research Projects Agency, Defense Sciences Office (DARPA DSO) Grant (HR0011-09- 1-0017)

    Polymerisation and surface modification of methacrylate monoliths in polyimide channels and polyimide coated capillaries using 660 nm light emitting diodes

    Get PDF
    An investigation into the preparation of monolithic separation media utilising a cyanine dye sensitiser/triphenylbutylborate/N-methoxy-4-phenylpyridinium tetrafluoroborate initiating system activated by 660nm light emitting diodes is reported. The work demonstrates multiple uses of red- light initiated polymerisation in the preparation of monolithic stationary phases within polyimide and polyimide coated channels and the modification of monolithic materials with molecules which absorb strongly in the UV region. This initiator complex was used to synthesise poly(butyl methacrylate- co-ethylene dimethacrylate) and poly(methyl methacrylate-co-ethylene dimethacrylate) monolithic stationary phases in polyimide coated fused silica capillaries of varying internal diameters, as well as within polyimide micro-fluidic chips. The repeatability of the preparation procedure and resultant mono- lithic structure was demonstrated with a batch of poly(butyl methacrylate-co-ethylene dimethacrylate) monoliths in 10

    Camouflaging in a Complex Environment—Octopuses Use Specific Features of Their Surroundings for Background Matching

    Get PDF
    Living under intense predation pressure, octopuses evolved an effective and impressive camouflaging ability that exploits features of their surroundings to enable them to “blend in.” To achieve such background matching, an animal may use general resemblance and reproduce characteristics of its entire surroundings, or it may imitate a specific object in its immediate environment. Using image analysis algorithms, we examined correlations between octopuses and their backgrounds. Field experiments show that when camouflaging, Octopus cyanea and O. vulgaris base their body patterns on selected features of nearby objects rather than attempting to match a large field of view. Such an approach enables the octopus to camouflage in partly occluded environments and to solve the problem of differences in appearance as a function of the viewing inclination of the observer

    Primary and secondary defences of squid to cruising and ambush fish predators : variable tactics and their survival value

    Get PDF
    Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Animal Behaviour 81 (2011): 585-594, doi:10.1016/j.anbehav.2010.12.002.Longfin squid (Loligo pealeii) were exposed to two predators, bluefish (Pomatomus saltatrix) and summer flounder (Paralichthys dentatus), representing cruising and ambush foraging tactics, respectively. During 35 trials, 86 predator–prey interactions were evaluated between bluefish and squid, and in 29 trials, 92 interactions were assessed between flounder and squid. With bluefish, squid predominantly used stay tactics (68.6%, 59/86) as initial responses. The most common stay response was to drop to the bottom, while showing a disruptive body pattern, and remain motionless. In 37.0% (34/92) of interactions with flounder, squid did not detect predators camouflaging on the bottom and showed no reaction prior to being attacked. Squid that did react, used flee tactics more often as initial responses (43.5%, 40/92), including flight with or without inking. When all defence behaviours were considered concurrently, flight was identified as the strongest predictor of squid survival during interactions with each predator. Squid that used flight at any time during an attack sequence had high probabilities of survival with bluefish (65%, 20/31) and flounder (51%, 18/35). The most important deimatic/protean behaviour used by squid was inking. Inking caused bluefish to startle (deimatic) and abandon attacks (probability of survival = 61%, 11/18) and caused flounder to misdirect (protean) attacks towards ink plumes rather than towards squid (probability of survival = 56%, 14/25). These are the first published laboratory experiments to evaluate the survival value of antipredator behaviours in a cephalopod. Results demonstrate that squid vary their defence tactics in response to different predators and that the effectiveness of antipredator behaviours is contingent upon the behavioural characteristics of the predator encountered.This study was funded by the Woods Hole Oceanographic Institution Sea Grant Program, the Massachusetts Marine Fisheries Institute, the University of Massachusetts and the Five College Coastal and Marine Sciences Program. R. T. Hanlon acknowledges partial support from ONR grant N000140610202 and the Sholley Foundation

    Toward Developing Models to Study the Disease, Ecology, and Evolution of the Eye in Mollusca*

    Full text link
    corecore