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ABSTRACT 

Longfin squid (Loligo pealeii) were exposed to two predators, bluefish (Pomatomus 

saltatrix) and summer flounder (Paralichthys dentatus), representing cruising and ambush 

foraging tactics, respectively. During 35 trials, 86 predator–prey interactions were evaluated 

between bluefish and squid, and in 29 trials, 92 interactions were assessed between flounder and 

squid. With bluefish, squid predominantly used stay tactics (68.6%, 59/86) as initial responses. 

The most common stay response was to drop to the bottom, while showing a disruptive body 

pattern, and remain motionless. In 37.0% (34/92) of interactions with flounder, squid did not 

detect predators camouflaging on the bottom and showed no reaction prior to being attacked. 

Squid that did react, used flee tactics more often as initial responses (43.5%, 40/92), including 

flight with or without inking. When all defence behaviours were considered concurrently, flight 

was identified as the strongest predictor of squid survival during interactions with each predator. 

Squid that used flight at any time during an attack sequence had high probabilities of survival 

with bluefish (65%, 20/31) and flounder (51%, 18/35). The most important deimatic/protean 

behaviour used by squid was inking. Inking caused bluefish to startle (deimatic) and abandon 

attacks (probability of survival = 61%, 11/18) and caused flounder to misdirect (protean) attacks 

towards ink plumes rather than towards squid (probability of survival = 56%, 14/25). These are 

the first published laboratory experiments to evaluate the survival value of antipredator 

behaviours in a cephalopod. Results demonstrate that squid vary their defence tactics in response 

to different predators and that the effectiveness of antipredator behaviours is contingent upon the 

behavioural characteristics of the predator encountered. 
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INTRODUCTION  

Predation is a constant source of risk for most animals. To maximize survival, prey have 

developed a wide repertoire of defences ranging from physical armor, toxic chemicals and 

behavioural displays to evasive manoeuvres (Cott 1940; Edmunds 1974; Bryan et al. 1997; 

Lenzi-Mattos et al. 2005; Speed & Ruxton 2005). Primary defences are generally characterized 

by camouflage and cryptic behaviours and are used to avoid detection or recognition and 

decrease encounter rates with potential predators (Endler 1991). When attack is imminent, 

secondary defences are deployed to delay, inhibit or escape from an approaching predator. The 

most common secondary defence is to flee (Humphries & Driver 1970; Eibl-Eibesfeldt 1975); 

however, direct interactions with predators are often unavoidable (Lingle & Pellis 2002; Edut & 

Eilam 2004). As a result, prey may attempt to startle, threaten or confuse a predator with 

defensive postures and erratic, unpredictable escape sequences known as protean behaviour 

(Humphries & Driver 1970; Edmunds 1974; Driver & Humphries 1988). Deimatic defences are 

sounds, displays and postures that intimidate or bluff (Young 1950; Edmunds 1974). Defensive 

eyespots are one example of a deimatic display found in frogs (Martins 1989; Lenzi-Mattos et al. 

2005), cephalopods (Hanlon & Messenger 1996), butterflies and moths (Vallin et al. 2005, 2007; 

Stevens et al. 2008a, b, 2009). Depending on the capabilities of the prey, deimatic displays may 

signal a warning of true danger or an attempt to deceive a predator into believing prey are larger 

or more dangerous than they really are; either way, the intention of such displays is to cause 

predators to hesitate or abandon their attacks (Humphries & Driver 1970; Hanlon & Messenger 

1996).  

 

Escape tactics that are erratic and unpredictable are known as protean behaviours and 
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function by confusing approaching predators and impairing their ability to predict prey escape 

trajectories or positions (Humphries & Driver 1967; Driver & Humphries 1988). Protean 

defences include the use of colour or body patterns to change appearance as seen in cephalopods 

(Hanlon & Messenger 1996), irregular movements such as freezing and fleeing in rodents (Edut 

& Eilam 2004), unsystematic escape trajectories in insects (Domenici et al. 2008), and similar 

examples in many taxa (Driver & Humphries 1988). Since predator–prey encounters may be 

incidental (e.g. the predator is not hungry) (Stankowitch & Coss 2006), deimatic and protean 

behaviours may also be effective in assessing risk and testing predator motivation (Edmunds 

1974). The decision of which defence tactic to use presumably depends on the type of predator, 

the severity of the threat and the environmental factors surrounding the encounter (Lima 1992; 

Lingle & Pellis 2002; Hoverman & Relyea 2007).  

 

 Coleoid cephalopods are prey to numerous marine vertebrates including fish, mammals 

and diving seabirds (Packard 1972; Clarke 1996; Croxall & Prince 1996; Smale 1996). Because 

they are soft-bodied and lack hard protective structures such as spines and shells, coleoid 

cephalopods have evolved a diverse array of other primary and secondary defence behaviours 

(Packard 1972; Hanlon & Messenger 1996). Most notable are their advanced abilities to colour 

change and camouflage (Hanlon 2007; Barbosa et al. 2008; Mathger et al. 2008), exhibit postural 

displays (Hanlon et al. 1999; Huffard 2006; Bush et al. 2009) and use ink to confuse both 

menacing predators and conspecifics (Wood et al. 2008). While cephalopods are known to use 

deimatic and protean displays towards predators (Moynihan & Rodaniche 1982; Hanlon & 

Messenger 1988, 1996; Adamo et al. 2006; Langridge 2009), few studies have evaluated the 

conditions and types of predators that evoke these defences during predator–prey interactions. 
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Direct observations of predator responses to cephalopod deimatic and protean displays and the 

survival value of these defences have been described only once in the field (Hanlon & 

Messenger 1988) but have not been measured experimentally (Hanlon & Messenger 1996).  

 

 When confronted with a predator, prey must make an initial decision to flee or stay 

(Edmunds 1974). The existing working hypothesis for cephalopods assumes that flee and stay 

tactics are shown in equal proportions to most predators (Fig. 1). Cryptic and deimatic 

behaviours are typical stay tactics in cephalopods and are thought to be followed by protean 

defences in a combined effort to prevent, misdirect or delay an impending attack (Hanlon & 

Messenger 1996). In this study, a laboratory-based approach was used to test this model and 

assess the survival value of antipredator defence behaviours shown by squid in response to two 

predators representing contrasting foraging tactics. Bluefish (Pomatomus saltatrix) and summer 

flounder (Paralichthys dentatus) are natural predators of longfin inshore squid (Loligo pealeii) in 

North Atlantic waters (Staudinger 2006) and were chosen to represent cruising and ambush 

foraging modes, respectively. Predator–prey interactions were evaluated to address the following 

four questions. (1) What is the initial response (flee or stay) shown by squid towards predators 

when threatened? (2) When all antipredator defences are considered concurrently, what 

behaviour or sequence of behaviours best predicts survival in the presence of each predator? (3) 

Are deimatic or protean behaviours better predictors of squid survival? (4) Do squid vary their 

responses depending on the type of predator encountered? 
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METHODS 

 

Animal Care 

 

 Animals were cared for and experiments were conducted in accordance with the 

regulations of the University of Massachusetts Amherst and the Marine Biological Laboratory 

Institutional Animal Care and Use Committees. Behavioural trials were conducted over a 2-year 

period at the Marine Resources Center (MRC) of the Marine Biological Laboratory (MBL) in 

Woods Hole, Massachusetts, U.S.A. We collected bluefish (size range 31–63 cm total length, 

TL) and summer flounder (size range 36–47 cm TL) from local waters and transported them 

back to the laboratory. Predators acclimated to captivity for approximately 1 month prior to use 

in behavioural experiments and were maintained on a diet of frozen and live fish and squid. We 

collected longfin inshore squid (size range 2–21 cm mantle length, ML) from Vineyard and 

Nantucket Sounds using a modified trawl net. Squid were transported back to the MBL in a live-

well tank and transferred either directly into the experimental tank or into a temporary holding 

tank. When it was necessary to hold squid overnight, they were fed live fish and small squid. 

Squid were handled as little as possible to avoid imposing further stress postcapture and 

transferred between tanks in containers filled with sea water to minimize exposure to air 

(Moltschaniwskyj et al. 2007). No squid was held in captivity for more than 48 h, and only 

individuals that were robust and showed little to no obvious physical distress were chosen for 

behavioural trials. 

 

After experiments were completed, all bluefish and flounder were released into local bays 
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and estuaries near their original point of capture. Squid were not used in multiple trials and were 

euthanized by being placed in salt water and then in a freezer (Moltschaniwskyj et al. 2007). 

These squid were then used to feed captive animals in the MRC.  

 

Experimental Design 

 

All trials were conducted in a 28 x 103 litre, 3.1 x 0.8 m (diameter, height) round tank 

filled with recirculating, and biofiltered sea water maintained between 16° and 20 °C. The 

bottom of the experimental tank was lined with a mixed gravel and sand substrate approximately 

2–4 cm deep. This allowed squid to rest on the bottom and camouflage, and allowed flounder to 

bury. The area surrounding the experimental tank was lined with black plastic sheeting to 

prevent disturbance to acclimating animals as well as during filming. The tank was illuminated 

by natural light from adjacent windows and during filming by two 500 W lights positioned above 

the tank.  

 

Twenty-four hours prior to each trial, three predators of similar total lengths were 

introduced into the experimental tank and food was withheld to standardize hunger levels. Three 

hours prior to the start of each trial, an opaque PVC cylinder (1.5 m in diameter, 1 m in height) 

was lowered into the experimental tank, and 15 squid were placed into the inner area of the 

cylinder and allowed to acclimate. A trial commenced when the cylinder was hoisted above the 

tank using a pulley system, and each trial lasted 30 min. Behavioural interactions between squid 

and fish were recorded using Panasonic miniDV PV GS500 video cameras that were manually 

operated at two lateral viewing windows on either side of the tank, and from a third camera 
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mounted above the experimental tank. This arrangement of cameras ensured that the entire tank 

was in view at all times and that most behavioural interactions could be viewed from multiple 

angles. 

  

Data Analyses 

 

Repeated use of predators was necessary because of the difficulties of obtaining and 

maintaining large numbers of fish in the laboratory. Using a randomized complete block design, 

we performed a Friedman's two-way ANOVA (Zar 1984) to test whether successive use of fish 

over the course of all trials affected the number of attacks made on squid or the number of 

capture efficiencies of bluefish and flounder. There were no significant differences in feeding 

behaviours of fish (all tests yielded Ps ≥ 0.18), suggesting that repeated use of predators in trials 

did not influence behavioural results.  

 

Individual squid could not be identified within trials, and a large proportion of squid was 

removed during trials by predation events (bluefish 45%, 39/86; flounder 42%, 39/92); therefore, 

to examine the influence of multiple attacks on squid within trials, trends in escape probabilities 

over consecutive attacks (e.g. first, second, third attack) were evaluated using linear regression 

analysis. We hypothesized that if the probability of escape decreased with consecutive attacks, 

deterioration in squid health or responsiveness would be evidenced; if the probability of escape 

increased with consecutive attacks, there was evidence of habituation or improved avoidance 

abilities of squid in response to predators. Escape probabilities did not vary across attacks for 

trials using bluefish (R2 = 0.09, P = 0.36) or flounder (R2 = 0.02, P  = 0.74), suggesting that 



11 
 

exposure to multiple attacks within a trial did not significantly influence squid behaviour. 

Nevertheless, because individual squid could not be identified for all events, the statistical 

probability values of chi-square tests and classification tree analyses described below should be 

interpreted with caution since there may be a lack of independence among behavioural responses 

and thus, the degree of pseudoreplication is unknown. 

 

  All predator–prey behaviours were assessed using frame-by-frame analysis of video 

recorded during each trial. Behavioural responses (initial and subsequent) shown by the specific 

squid targeted during each predator–prey interaction were recorded, classified as primary or 

secondary defences, grouped into subcategories including flight, deimatic and protean 

behaviours, and compiled in an ethogram. The survival value of each interaction was classified 

as either (1) mortality due to predation, (2) an escape whereby a predator executed an attack but 

the squid was successful in evading the predator, or (3) an attack abandoned by the predator. In 

abandoned attacks, predators initiated an aggressive movement towards prey, but did not open 

their mouths or complete their attacks. For example, bluefish were observed to orient towards 

squid and then turn away during the final approach. Additionally, summer flounder often 

reduced swimming speeds and sometimes glided through the water several body lengths away 

from a targeted squid.  

 

Initial behaviours displayed by squid in response to an aggressive approach by a predator 

were designated as either a stay or a flee tactic. A chi-square test was used to determine whether 

squid used stay or flee tactics more frequently as initial responses when threatened by each 

predator. The null model was based on the existing working hypothesis for cephalopods (Hanlon 
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& Messenger 1996) that stay and flee tactics would be shown in equal proportions (50:50) 

towards each predator (Fig. 1). 

 

Classification tree analysis was used to determine the behaviour or sequence of 

behaviours that were most influential on squid survival overall, and whether deimatic or protean 

defences were better predictors of squid survival in the presence of each predator. Classification 

tree analysis is a nonparametric, rank-based discrimination procedure that explains differences 

among prespecified groups and has the ability to test the significance of overall group 

classification (McGarigal et al. 2000). Classification tree analysis works by recursively 

partitioning data into groups that are increasingly more homogeneous using split-values of the 

explanatory values, and that maximize within-group homogeneity and among-group 

heterogeneity according to a prespecified information index. Trees are typically overgrown and 

then ‘pruned’ back to a smaller tree size (according to the number of terminal nodes, also called 

‘leaves’) that has the minimum honest estimate of true (prediction) error, which is determined by 

a cross-validation procedure.  

 

Classification tree analyses were used in this study for several reasons. First, the data 

contained both continuous and categorical explanatory (defence behaviours) and response 

variables (mortality, escape, abandoned attack), which many parametric statistical methods are 

unable to manage. Second, classification tree analyses have the ability to explain 

nonhomogenous relationships between explanatory and response variables, which are a common 

occurrence in studies such as this. Third, results from classification tree analyses are easily 

interpretable and can be used effectively and efficiently for predictive purposes.  
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Classification tree analyses were conducted using the ‘cartware’ package under the 

‘rpart’ library in the R computing environment (version 2.9.2, Free Software Foundation, Inc., 

Boston, MA, U.S.A.). Specifically, trees were built using splits as determined by the Gini 

information index, and final trees were pruned using a 10-fold cross-validation procedure by 

employing the 1-S.E. rule (De'ath & Fabricius 2000). The statistical significance of each 

classification tree was assessed using a Monte Carlo permutation procedure using 100 

permutations. Classification trees analysis was chosen over more traditional parametric 

techniques because it is able to account for and describe the influence of multiple explanatory 

variables concurrently.  

 

RESULTS 

 

Bluefish and flounder used different predatory behaviours when hunting squid. Bluefish 

swam around the tank in an organized school and actively searched for squid in the water column 

and on the substrate. When squid were attacked in the water column, bluefish increased their 

swimming speed and burst towards individuals or shoals of squid. When squid were attacked on 

the substrate, bluefish oriented their bodies in a head-down posture, and grabbed squid off the 

bottom. Conversely, solitary flounder were scattered around the tank and either were buried 

beneath the substrate or were camouflaged while resting on top of the substrate (Fig. 2a). 

Flounder would often lie-in-wait and ambush squid as they swam overhead. Although ambush 

attacks were most common, flounder also stalked squid on the substrate and used active attacks 

to pursue squid swimming in the water column.  
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Over the course of 35 trials, 86 predator–prey interactions were evaluated between squid 

and bluefish, and during 29 trials, 92 interactions were assessed between flounder and squid. 

Each interaction was representative of the behaviours shown by a single squid and a single 

predator. We identified three primary defence behaviours and 15 secondary defence behaviours 

(Table 1). During bluefish trials, both the predator and the prey were in plain view and aware of 

each other’s presence the moment the partition was raised and trials commenced, so we 

considered all squid defensive behaviours during these trials to be secondary defence tactics. In 

experiments with flounder, primary defence was observed during 10 trials. Squid were 

considered to be using primary defence if during the initial period after the partition was raised 

(1) the squid showed no alarm behaviours or (2) showed disruptive body patterns either while 

resting on the substrate or swimming, and (3) flounder remained motionless and camouflaged on 

the bottom. We considered squid to show a switch to secondary defence tactics the moment their 

behaviour indicated alarm or awareness of the flounder’s presence (e.g. tightening of school 

formation, moving to the surface) or when the flounder moved around the tank. 

 

Initial Response (Flee or Stay) of Squid towards Predators When Threatened  

 

With bluefish predators, squid predominantly (68.6%, 59/86) used stay tactics (χ2
1 = 

11.91, P = 0.0006) as their initial response (Fig. 3). Dropping to the substrate with a disruptive 

body pattern was the most common tactic (Table 2); squid held this position for long periods of 

time (> 10 s), remaining motionless even when bluefish swam directly overhead (Fig. 2b). Stay 

tactics displayed in the water column included tightening of school formation and deimatic arm 



15 
 

postures such as upward V-curl. Flee tactics were used less often (31.4%, 27/86) and generally 

included flight with or without inking, and moving to the surface.  

 

In 37.0% (34/92) of interactions with flounder, squid did not detect predators 

camouflaging on the bottom and showed no reaction prior to being attacked. When squid were 

aware of an impending attack by flounder, the most common initial response (43.5% (40/92) of 

all interactions) was to flee (χ2
1 = 8.35, P = 0.004; Fig. 3). Flee tactics included flight with or 

without inking, scattering and moving to the surface (Table 2). Stay tactics were shown less 

often (19.6% (18/92) of all interactions) and included primary defence (camouflaging on the 

bottom), upward V-curl displays and orienting towards flounder while holding a stationary 

position at the water’s surface.  

 

After the initial tactic of stay or flee, squid showed varying sequences of behaviours 

towards predators in an attempt to avoid or deter attacks. With bluefish, squid that initially used 

stay tactics, almost always followed with flight (37%, 11/30) and to a lesser extent protean 

locomotor behaviours (7%, 2/30). When stay tactics were shown as initial responses to flounder, 

squid were slightly more likely to follow with protean locomotor behaviours (28%, 5/18) than 

with flight (17%, 3/18). Body pattern changes and inking were frequently shown to both 

predators subsequent to the initial decision to flee (Fig. 4). Percentage occurrence and mortality 

rates of individual behaviours are reported in the Appendix.  
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Behaviours That Best Predicted Survival 

 

Squid behavioural defences either disrupted the attack sequence causing predators to 

abandon their pursuit; or if an attack was completed, squid escaped and survived, or were 

captured and consumed (Table 3). When all behaviours listed in Table 1 were considered 

concurrently, classification tree analysis selected flight as the best predictor of squid survival 

during bluefish trials (Fig. 5a). The classification tree included two leaves (Kappa = 0.36, P < 

0.01) corresponding to a high probability (65%, 20/31) of survival due to abandoned attacks 

when squid fled at least 10 body lengths away, and a high probability (64%, 35/55) of mortality 

when squid did not flee from bluefish (Fig. 5a).  

 

When all defence behaviours (Table 1) shown towards flounder were evaluated, survival 

was generally predicted by whether or not squid reacted to flounder prior to being attacked (Fig. 

5b). The classification tree formed a three-leaved tree (Kappa = 0.44, P < 0.01) corresponding to 

a high probability (78%, 29/37) of mortality if squid did not react. Squid that did react had a 

higher probability (88%, 7/8) of survival if attacked while showing a disruptive body pattern in 

the water column than when attacked while showing a disruptive body pattern near the bottom 

(probability of an abandoned attack 45%, 21/47). We suspected that reaction was masking the 

influence of other behaviours of interest; to further explore the effectiveness of behavioural 

tactics on squid survival, an alternative tree was built excluding the reaction variable. The 

resulting tree formed two leaves (Kappa = 0.32, P = 0.03) and selected flight as the primary 

splitting variable (tree not shown); not surprisingly, squid had a high probability of escape (51%, 

18/35) when they fled compared to a high probability of mortality (63%, 35/57) when they did 
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not.  

 

Deimatic versus Protean Behaviours as Predictors of Squid Survival 

 

The classification tree built using only deimatic and protean behaviours (e.g. postural, 

locomotor, chromatic and inking displays) shown towards bluefish formed three leaves (Kappa = 

0.32, P = 0.03), and deimatic postural displays were selected as the primary splitting variable 

(Fig. 6a). Squid had the highest probability (88%, 7/8) of surviving an attack by bluefish when 

the tentacles extended display was shown. When upward V-curl and vertical hanging postures 

were combined with inking, squid had a higher probability (61%, 11/18) of survival due to 

abandoned attacks than when arm postures were used alone (58% probability of mortality, 

35/60).  

 

When only deimatic and protean behaviours shown towards flounder were evaluated, a 

two-leaved classification tree was formed (Kappa = 0.24, P < 0.0005) and inking was selected as 

the primary splitting variable (Fig. 6b). Squid that inked had a higher probability of escaping 

(56%, 14/25) attacks made by flounder compared to when squid did not ink (probability of 

mortality 54%, 36/67). 

 

DISCUSSION 

 

Our results show that longfin squid vary their defence behaviours in response to different 

types of predators. When confronted with bluefish, a pelagic fish that actively searches for prey 
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while swimming in the water column, squid primarily used stay tactics as initial responses. The 

most common stay response shown during bluefish trials was to drop to the bottom while 

displaying a disruptive body pattern. Squid remained motionless and camouflaged on the bottom 

even if bluefish passed directly above, but would often flee if bluefish oriented downwards in an 

attack posture. Similar reactions to other cruising fish predators such as striped bass (Morone 

saxatilis), and sudden movements or disturbances from overhead have been reported in wild 

squid (Stevenson 1934; Macy 1982) as well as in cuttlefish (Sepia officinalis) (Hanlon & 

Messenger 1988). Dropping to the bottom and camouflaging against the substrate was never 

observed as an initial response towards flounder, suggesting that this behavioural defence is 

specifically used by squid to avoid pelagic or cruising predators such as bluefish, tunas and 

mackerel that commonly feed on squid in continental shelf waters of the northwest Atlantic 

(Bowman et al. 2000; Staudinger 2006).  

 

Conversely, squid primarily used flee tactics as initial responses to approaches by 

flounder, a benthic ambush predator. Unlike predator–prey interactions with bluefish, there was 

no single defence behaviour that was shown repeatedly towards flounder over the course of all 

trials. Squid alternated among flight with or without inking and showed various protean 

locomotor behaviours as initial responses to flounder attacks; however, erratic jetting, explosive 

scattering and the blanch-ink-jet manoeuvre were shown almost exclusively towards flounder.  

 

Prey that are subjected to attack by multiple species of predators will often use different 

modes of defence against each type of predator (Edmunds 1974; Driver & Humphries 1988; 

Sherbrooke 2008). The different behavioural tactics shown by squid to bluefish and flounder 
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indicate that squid have evolved recognition and response skills that have led to species-specific 

or type- specific (ambush, cruising) antipredator responses (Edmunds 1974; Sherbrooke 2008). 

Given these results, we suggest that the existing model for cephalopod defence presented in 

Hanlon & Messenger (1996) be refined to reflect two distinct sequences of antipredator 

responses (Fig. 7). During interactions with bluefish, which are chase predators, squid showed a 

disproportionally large fraction of stay tactics as initial responses, followed mainly by flight, and 

less often by protean behaviours. During interactions with flounder, which are ambush predators, 

squid used flight and protean behaviours as initial and subsequent responses; stay tactics, which 

were rarely shown, were followed by flight and protean behaviours in relatively equal 

proportions. 

 

Previous studies have shown that coleoid cephalopods respond to potential predators with 

a variety of antipredator behaviours (Moynihan & Rodaniche 1982; Hanlon & Messenger 1996; 

Adamo et al. 2006; Langridge 2009), but to the best of our knowledge this is the first study to 

predict and measure the survival values of key defence behaviours based on actual predation. 

When all antipredator defence behaviours were considered concurrently, flight was selected by 

classification tree analyses as the best predictor of squid survival with bluefish and also with 

flounder when squid reacted to attacks. Flight is the most common secondary defence among 

animals (Edmunds 1974), and the decision of when to flee is subject to a high degree of natural 

selection (Stankowitch & Coss 2006). Squid primarily used stay behaviours as their initial 

response to bluefish, which is a good tactic to avoid visual, cruising predators that are attracted to 

movement (Neill & Cullen 1974; Keenleyside 1979; Scharf et al. 2002). When attack was 

imminent, the use of flight during any stage (e.g. detection, approach) of an interaction with 
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bluefish led to higher survival rates by disrupting the attack sequence and causing bluefish to 

abandon pursuit. Flight was not as influential in deterring attacks by flounder but instead was 

important if flounder were unsuccessful in their initial attempts to ambush and capture squid. In 

these instances, squid evaded capture by outmanoeuvring flounder as they fled. Flounder have 

compressed body forms, and are less agile and slower swimmers than bluefish (Olla et al. 1997; 

Collette & Klein-MacPhee 2002); consequently, squid may be more likely to outswim flounder 

when pursued. Squid were more vigilant of bluefish than they were of flounder; hence, they were 

able to use stay behaviours, including deimatic displays, to assess the motivational state and risk 

of an approaching bluefish prior to resorting to flight (Edmunds 1974; Stankowitch & Coss 

2006). 

 

Deimatic behaviours are thought to startle or frighten predators into hesitating or 

abandoning their attacks (Edmunds 1974). Studies have shown that prey do not always perform 

deimatic displays towards all types of predators (Hanlon & Messenger 1988; Sherbrooke 2008; 

Langridge 2009), and displays vary in their effectiveness against different predators (Vallin et al. 

2005, 2007). Deimatic postural displays had a positive and significant impact on squid survival 

with bluefish but were not as important with flounder. The ‘tentacles extended’ posture was the 

most effective display because it was used in conjunction with flight, whereas upward V-curl and 

vertical hanging postures were displayed from stationary positions near the surface. Deimatic 

postural displays probably function to make squid appear larger and may be more effective 

against gape-limited predators.  

 

Evaluations of predator–prey responses were limited to interactions where fish 
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behaviours could be interpreted as reliable signals of predatory intent, such as when fish showed 

some form of orientation or approach towards squid . In addition to behaviours shown in direct 

response to an approaching predator, deimatic postures were also displayed towards bluefish and 

flounder that were swimming or resting on the substrate below squid, and thus, that demonstrated 

no immediate threat to the squid. Since deimatic displays were successful in deterring direct 

attacks, it is possible that these behaviours may also have influenced predators at times that were 

not obvious to us. For example, cuttlefish show deimatic displays towards nonpredators that 

swim nearby (Hanlon & Messenger 1988; Langridge 2009). In the present study, deimatic 

displays caused both predators to abort some attacks, suggesting that deimatic displays are an 

effective antipredator strategy in longfin squid. Our findings with squid contrast with previous 

conclusions (based on cuttlefish) that coleoid cephalopods do not display deimatic responses 

towards highly dangerous predators (Langridge 2009).  

  

Despite the highly developed visual and mechanosensory systems of cephalopods 

(Hanlon & Messenger 1996), in over one-third of all predator–prey interactions with flounder, 

the squid showed no reaction prior to being attacked. Ambush attacks are the primary tactic used 

by flounder to capture large mobile prey including squid and fish (Staudinger & Juanes 2010). 

Squid appeared to be incapable of detecting camouflaged flounders below them at short 

distances, and squid that were ambushed by flounder were clearly at a disadvantage and 

responded using strong protean locomotor displays such as explosive scattering and erratic 

jetting. Similar behaviours have been reported in studies when predators were not detected by 

prey until they were in close proximity (Edmunds 1974; Driver & Humphries 1988).  
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Protean locomotor defences were not selected as key predictors of squid survival by 

classification tree analyses even though they were frequently used during interactions with 

flounder. This is probably because these tactics were not used until an attack was already in 

progress and reaction times were shorter than when squid were able to detect flounder from a 

distance. Protean defence manoeuvres were also used when fleeing from flounder. For example, 

when squid use flight they often vary the angle, speed and direction of their trajectory (Driver & 

Humphries 1988). Under natural conditions, protean escape behaviours may be more effective 

when squid are not restricted in the distance they can flee and reaction times are longer 

(Stankowitch & Coss 2006). When flounder were detected, squid swam near the surface and 

spent less time on or near the substrate overall in comparison to trials with bluefish. Squid 

behaviour was probably influenced by flounder’s strong association with the bottom and the 

higher predicted risk of mortality when attacked in the lowest portion of the water column. 

Under natural conditions, juvenile cuttlefish (S. officinalis) showed similar behaviours, and 

consistently swam towards the surface when confronted with the benthic predator Serranus 

cabrilla; the fish never followed beyond 1m from the benthos (Hanlon & Messenger 1988).  

 

 In cephalopods that inhabit shallow-water environments, inking is thought to act 

primarily as a visual display to distract, hide or escape from predators and as an alarm cue to 

conspecifics (Hanlon & Messenger 1996; Wood et al. 2008, 2010). In a recent study, ink of the 

Caribbean reef squid, Sepioteuthis sepioidea, was found to have deterrent properties against 

predatory fish (Wood et al. 2010). Our results support the conclusions put forth by Wood et al. 

(2010) that inking protects squid and provides the first direct experimental evidence that inking 

enhances squid survival during interactions with fish predators. When used in conjunction with 
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deimatic arm postures, inking increased the probability of abandoned attacks by bluefish and was 

selected as the most influential deimatic/protean display overall with flounder. Although inking 

has been referred to as a protean defence (Wood et al. 2008), predator reactions in this study 

demonstrated that inking functions as both a protean and a deimatic defence. Bluefish were 

observed to startle (deimatic response) and turn at acute angles away from ink plumes ejected by 

retreating squid (Supplementary Material, Video S1). Flounder were less affected by inking but 

were observed to misdirect (protean response) some of their attacks towards ink plumes rather 

than towards squid. Cephalopod ink contains the chemical properties to disrupt predator sensory 

systems and may also act as a chemical deterrent (Derby 2007; Derby et al. 2007; Wood et al. 

2010). Although inking clearly affected predatory behaviour, it did not cause bluefish and 

flounder to avoid squid entirely. Since predators show aversion towards other molluscs such as 

sea hares that produce unpalatable secretions (Derby 2007), it seems unlikely that ink provided 

chemical protection from the fish in this study. It is possible that different species vary in their 

sensitivity to squid ink and that inking may inhibit predation by some species, as has been 

observed with other cephalopods (Caldwell 2005).  

  

Hanlon & Messenger (1996) suggested that because coleoid cephalopods lack physical 

defensive structures, the primary defence of camouflage in its many manifestations is used 

extensively to avoid visual predators. In this study, camouflage via banded body patterns that 

presumably act as disruptive coloration, used in combination with dropping to the bottom, was 

frequently shown by longfin squid in response to bluefish but was designated as a secondary 

defence tactic since bluefish were aware of squid’s presence in the tank at all times. The 

restricted space, artificially high light levels and lack of structural complexity of the laboratory 
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setting probably facilitated predator detections of squid and increased prey detection and capture 

rates (Michel & Adams 2009). Under natural conditions, countershading by squids as they hover 

above the substrate or in the water column probably provides some degree of camouflage as 

primary defence, especially in the mostly turbid waters of the northwest Atlantic.  

 

Because multiple attacks occurred within some trials, it is possible that squid behaviour 

was affected by prior experiences. However, squid used in behavioural trials were collected from 

the wild and acclimated to captivity for only a few hours, and experiments were brief (30 min). 

Prior to being brought into the laboratory, squid probably experienced predatory events with 

natural predators, including bluefish and flounder, which co-occur in regional waters (Staudinger 

2006); therefore, squid used in laboratory trials were not naïve to predators, and it is unlikely that 

squid had sufficient time to adapt their behaviour to the laboratory setting or to the predators 

within each experiment.  

 

Conclusions 

 

Squid and other coleoid cephalopods have evolved a range of primary and secondary 

behaviours to protect themselves against predators. Avoiding detection via crypsis is thought to 

be the first line of defence in cephalopods (Hanlon & Messenger 1996) as well as in many other 

marine and terrestrial animals (Edmunds 1974). In this study, predators were generally aware of 

prey as soon as trials began, making evaluations of primary defence difficult; consequently, our 

conclusions are limited to the effectiveness of secondary defences. Although no single behaviour 

guaranteed survival, there were clear advantages of using certain defences over others during 
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confrontations with each predator. Predators that chase, such as bluefish, rely on speed and 

endurance to pursue and overcome prey, while ambush predators such as flounder rely on rapid 

and sudden strikes to catch prey and rarely pursue prey over long distances (Neill & Cullen 

1974). Squid recognized the threats posed by each predator and adapted their behaviours 

accordingly, by using slow and subtle movements or deimatic behaviours during interactions 

with bluefish, and by using protean behaviours with flounder. Overall, squid survival was 

significantly improved when flight or inking was used as part of their escape. Flight represents 

the most common defence in all animals (Eibl-Eibesfeldt 1975; Driver & Humphries 1988), and 

inking is arguably one of the most unique behaviours inherent to cephalopods. Inking and other 

unusual antipredator behaviours may function as more than one type of defence depending on 

how predators react; regardless, inking clearly affected predatory behaviour and increased the 

probability of squid survival, and, overall, may give squid an advantage in the predator–prey 

arms race. Differences in the behavioural sequences of squid towards bluefish and flounder 

suggest that some aspects of the cephalopod model proposed by Hanlon & Messenger (1996; 

their Figure 5.1) may not apply to this species of cephalopod. We offer a refined model for squid 

that describes two antipredator defence sequences that we suggest have evolved as responses to 

ambush and cruising predators (Fig. 7); however, future studies that test additional squid–

predator combinations are needed to verify whether the antipredator responses shown towards 

bluefish and flounder are species specific or universal to all ambush and cruising predators. It is 

noteworthy that laboratory experiments may provide an oversimplified view of species 

interactions and are only a first step to understanding the survival value of cephalopod defence 

tactics. Additional studies conducted in natural habitats are necessary to gain further insight into 

antipredator behaviours of cephalopods and predator responses. 
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Table 1 

Ethogram of squid behavioural responses to bluefish and flounder predators 

Category Behaviour Description 
Prey awareness   

 No reaction Squid appears unaware of predator(s); shows no response prior to 
attack 

Reaction Squid reacts to approaching predator using defence behaviours 
Primary defence   
 Camouflage on 

substrate 
Disruptive body pattern shown while squid rests on the substrate 

Camouflage in the 
water column 

Disruptive body pattern shown while squid is swimming 

Organized school with 
a countershading 
pattern 

Squids exhibit a countershading body pattern; swim facing the same 
direction, parallel to each other, and close together 

Secondary defence  

Flight Squid rapidly moves away from threat via jet propulsion 

Deimatic  

 Orient towards 
predator 

Squid face the direction of approaching predator while maintaining 
position in water column near the surface 

Postural Upward V-curl Arms flared upwards, exposing beak 
Vertical hanging Squid hangs vertically in water column near the surface, arms and 

sometimes tentacles droop downwards 

Tentacles extended Both tentacles are extended as squid is swimming 
Chromatic Disruptive body 

pattern 
Amber and pink coloration with brown banding; used to camouflage 
against substrate while dropping to the bottom, resting on the bottom 
and while swimming in the water column 

All-dark body pattern Rapid change in body colour to deep brown or red  
       Protean   

 Drop to substrate Squid slowly drops to the substrate and shows a disruptive banded 
body pattern; once on the substrate, squid remains motionless 

Move to surface Squid rises to the water's surface (usually accompanied by a chromatic 
change) and orients towards predator 

Tighten school 
formation 

Distance between individuals decreases, squids face same direction 
and swim parallel to each other 

Locomotor via jet propulsion 
Scatter Group of squids disperses in multiple and random directions 
Erratic jetting Squid jets randomly in multiple directions, sometimes alternating 

between freezing and fleeing 
Blanch-ink-jet Squid turns all clear, ejects ink cloud, and rapidly jets away  
Jet out of water Squid jets out of water in opposite direction of threat 

Ink 
Expulsion of ink either in dense plumes, diffuse clouds, or as 
pseudomorphs. Typically observed in combination with flight 
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Table 2 

Initial response behaviours (stay or flee) of squid towards bluefish and flounder when threatened  

Initial response to predator Bluefish Flounder 
N % N % 

No reaction 0 - 34 37.0 
     
Stay tactics (Total) 25 68.6 17 19.6 
Primary defence* 0 - 3 3.3 

Deimatic     
        Orient towards predator 2 2.3 3 3.3 

Postural     
Upward V-curl 4 4.7 9 9.8 

       Vertical hanging 2 2.3 0 - 
Chromatic     

Disruptive body pattern* 15 17.4 0 - 
                All-dark body pattern 2 2.3 2 2.2 
Protean     

Drop to substrate and camouflage 24 27.9 0 - 
                Tighten school formation 10 11.6 1 1.1 

Flee tactics (Total) 27 31.4 40 43.5 
Flight 11 12.8 17 18.5 
Ink and flight 5 5.8 10 10.9 
Protean     

       Move to surface 8 9.3 5 5.4 
Locomotor via jet propulsion     

Scatter 1 1.2 7 7.6 
Erratic jetting 2 2.3 1 1.1 

N = number of observations; % = percentage of all interactions where a behaviour was shown as 

an initial response. Results correspond to Fig. 3. 

* Squid held disruptive banded body pattern and remained motionless on substrate as predators 

approached or passed overhead. 



35 
 

Table 3 

Outcomes of predator–prey interactions between longfin squid and bluefish or flounder 

 N % 

Bluefish 

Escapes 12 14.0 

Mortalities 39 45.3 

Abandoned attacks 35 40.7 

Total interactions 86 

Summer flounder     

Escapes 31 33.7 

Mortalities 39 42.4 

Abandoned attacks 22 23.9 

Total interactions 92 

N = the number of observations; % = percentage of all observations resulting in survival or 

mortality of squid.
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FIGURES 

Figure 1. Hypothesized sequence of cephalopod defences during interaction with predators. 

Modified from Hanlon & Messenger (1996). 

 

Figure 2. (a) Summer flounder (Paralichthys dentatus) camouflaging on the substrate. (b) 

Longfin squid (Loligo pealeii) showing a disruptive banded body pattern on the substrate after 

dropping to the bottom, with bluefish (Pomatomus saltatrix) swimming overhead. Arrows point 

to camouflaging squid.  

 

Figure 3. Percentage frequency of stay and flee tactics shown as initial responses by squid 

towards bluefish and summer flounder during predator–prey behavioural trials. Results 

correspond to Table 2. 

 

Figure 4. Percentage frequency of occurrence of all squid behavioural defences shown during 

predator–prey interactions with bluefish and flounder. Includes initial responses and subsequent 

reactions. Percentage occurrence and mortality rates of individual behaviours are reported in the 

Appendix.  

 

Figure 5. Classification trees describing the outcomes of predatoreprey interactions in 

behavioural trials. Classification trees depict recursive partitioning of observations into a final set 

of leaves that best explained differences in squid survival based on all primary and secondary 

behavioural variables shown towards (a) bluefish (model correct classification rate (CCR) = 

0.64, Kappa = 0.36, P < 0.01) and (b) flounder (model CCR = 0.6196, Kappa = 0.44, P > 0.01). 
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Observations or statements that were ‘true’ for each splitting variable are presented in the left 

branch; all other responses are presented in the right branch. Values at the base of each leaf 

correspond to the percentage of observations in all trials classified as the dominant response 

variable (escape, mortality, abandoned attacks) in that leaf. Values in parentheses are the total 

number of observations in each leaf. 

 

Figure 6. Classification trees describing the outcomes of predatoreprey interactions in 

behavioural trials. Classification trees depict recursive partitioning of observations into a final set 

of leaves that best explained differences in squid survival based only on deimatic and protean 

behavioural variables shown towards (a) bluefish (model CCR = 0.62, Kappa = 0.32, P = 0.03), 

and (b) flounder (model CCR = 0.54, Kappa = 0.24, P < 0.0005). Observations or statements that 

were ‘true’ for each splitting variable are presented in the left branch; all other responses are 

presented in the right branch. Values at the base of each leaf correspond to the percentage of 

observations in all trials classified as the dominant response variable (escape, mortality, 

abandoned attacks) in that leaf. Values in parentheses are the total number of observations in 

each leaf.  

 

Figure 7. Refined model of antipredator defence sequences shown by squid during interactions 

with (a) pelagic cruising predators and (b) benthic ambush predators. Arrow thickness varies 

according to the importance of each type of response shown by squid towards each predator. 
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Behavior N
% all 

interactions
% 

mortality N
% all 

interactions
% 

mortality
Prey Awareness

No reaction 0 - - 34 37.0 78.4
Reaction 86 100.0 45.3 58 63.0 18.2

Primary defense
Camouflage on substrate 0 - - 2 2.2 50.0
Camouflage in the water column 0 - - 7 7.6 57.1
Organized school with a 
countershading pattern 0 - - 1 1.1 0.0

Secondary Defenses
Flight 31 36.0 12.9 35 38.0 8.6

Deimatic
Orient towards predator 19 22.1 57.9 4 4.3 0.0

Postural
Upward v-curl 10 11.6 50.0 11 12.0 36.4
Vertical hanging 5 5.8 20.0 0 - -
Tentacles extended 3 3.5 0.0 2 2.2 0.0

Chromatic
Disruptive body pattern 33 38.4 51.5 15 16.3 60.0
All Dark body pattern 7 8.1 28.6 17 18.5 23.5

Protean
Drop to substrate 25 29.1 36.0 1 1.1 0.0
Move to surface 6 7.0 83.3 5 5.4 0.0
Tighten school formation 12 14.0 66.7 1 1.1 100.0

Locomotor via jet propulsion
Scatter 1 1.2 100.0 11 12.0 9.1
Erratic jetting 3 3.5 0.0 6 6.5 16.7
Blanch-ink-jet 0 - - 2 2.2 100.0
Jet out of water 2 2.3 0.0 2 2.2 0.0

Ink 18 20.9 16.7 25 27.2 12.0

Bluefish Flounder

Appendix 1: Frequency, percent occurrence, and percent mortality of all squid defenses shown in 
sequence following an attack by bluefish or flounder.  Behaviors selected by classification tree 
analyses as the best predictors of survival are shown in Figures 5 and 6.




