5,264 research outputs found

    Coherent States for the Non-Linear Harmonic Oscillator

    Full text link
    Wave packets for the Quantum Non-Linear Oscillator are considered in the Generalized Coherent State framerwork. To first order in the non-linearity parameter the Coherent State behaves very similarly to its classical counterpart. The position expectation value oscillates in a simple harmonic manner. The energy-momentum uncertainty relation is time independent as in a harmonic oscillator. Various features, (such as the Squeezed State nature), of the Coherent State have been discussed

    Bistable Amphoteric Native Defect Model of Perovskite Photovoltaics

    Full text link
    The past few years have witnessed unprecedented rapid improvement of the performance of a new class of photovoltaics based on halide perovskites. This progress has been achieved even though there is no generally accepted mechanism of the operation of these solar cells. Here we present a model based on bistable amphoteric native defects that accounts for all key characteristics of these photovoltaics and explains many idiosyncratic properties of halide perovskites. We show that a transformation between donor-like and acceptor-like configurations leads to a resonant interaction between amphoteric defects and free charge carriers. This interaction, combined with the charge transfer from the perovskite to the electron and hole transporting layers results in the formation of a dynamic n-i-p junction whose photovoltaic parameters are determined by the perovskite absorber. The model provides a unified explanation for the outstanding properties of the perovskite photovoltaics, including hysteresis of J-V characteristics and ultraviolet light-induced degradation.Comment: 21 pages, 7 figure

    Direct Signals for Large Extra Dimensions in the Production of Fermion Pairs at Linear Colliders

    Get PDF
    We analyze the potentiality of the new generation of e+ee^+e^- linear colliders to search for large extra dimensions via the production of fermion pairs in association with Kaluza-Klein gravitons (G), i.e. e+effˉGe^+e^- \leftarrow f\bar{f}G. This process leads to a final state exhibiting a significant amount of missing energy in addition to acoplanar lepton or jet pairs. We study in detail this reaction using full tree level contibutions due to the graviton emission and the standard model backgrounds. After choosing the cuts to enhance the signal, we show that a linear collider with a center-of-mass energy of 500 GeV will be able to probe quantum gravity scales from 0.96(0.86) up to 4.1(3.3) TeV at 2(5)σ\sigma level, depending on the number of extra dimensions.Comment: 19 pages, 5 figures. Using RevTex, axodraw.sty. Discussion was extended. No changes in the results. Accepted for publication by Phys. Rev.

    PDF and scale uncertainties of various DY distributions in ADD and RS models at hadron colliders

    Get PDF
    In the extra dimension models of ADD and RS we study the dependence of the various parton distribution functions on observable of Drell-Yan process to NLO in QCD at LHC and Tevatron energies. Uncertainties at LHC due to factorisation scales in going from leading to next-to-leading order in QCD for the various distributions get reduced by about 2.75 times for a μF\mu_F range 0.5 Q<μF<1.5 Q0.5 ~Q < \mu_F < 1.5 ~Q. Further uncertainties arising from the error on experimental data are estimated using the MRST parton distribution functions.Comment: 27 pages, 11 figures, the version to appear in European Physical Journal

    Effects of Line-tying on Magnetohydrodynamic Instabilities and Current Sheet Formation

    Full text link
    An overview of some recent progress on magnetohydrodynamic stability and current sheet formation in a line-tied system is given. Key results on the linear stability of the ideal internal kink mode and resistive tearing mode are summarized. For nonlinear problems, a counterexample to the recent demonstration of current sheet formation by Low \emph{et al}. [B. C. Low and \AA. M. Janse, Astrophys. J. \textbf{696}, 821 (2009)] is presented, and the governing equations for quasi-static evolution of a boundary driven, line-tied magnetic field are derived. Some open questions and possible strategies to resolve them are discussed.Comment: To appear in Phys. Plasma

    Brane fluctuations and suppression of Kaluza-Klein mode couplings

    Full text link
    In higher dimensional models where the gauge and gravity fields live in the bulk and the matter fields only in a brane, we point out the importance of the brane (transverse) coordinate modes, which are the Nambu-Goldstone bosons appearing as a result of spontaneous breaking of the translation symmetry. The brane recoil effect suppresses the couplings of higher Kaluza-Klein modes to the matter, and gives a natural resolution to the divergence problem caused by the exchange of infinitely many Kaluza-Klein modes.Comment: 11 pages, 1 eps figure, references adde

    Analytic calculation of energies and wave functions of the quartic and pure quartic oscillators

    Full text link
    Ground state energies and wave functions of quartic and pure quartic oscillators are calculated by first casting the Schr\"{o}dinger equation into a nonlinear Riccati form and then solving that nonlinear equation analytically in the first iteration of the quasilinearization method (QLM). In the QLM the nonlinear differential equation is solved by approximating the nonlinear terms by a sequence of linear expressions. The QLM is iterative but not perturbative and gives stable solutions to nonlinear problems without depending on the existence of a smallness parameter. Our explicit analytic results are then compared with exact numerical and also with WKB solutions and it is found that our ground state wave functions, using a range of small to large coupling constants, yield a precision of between 0.1 and 1 percent and are more accurate than WKB solutions by two to three orders of magnitude. In addition, our QLM wave functions are devoid of unphysical turning point singularities and thus allow one to make analytical estimates of how variation of the oscillator parameters affects physical systems that can be described by the quartic and pure quartic oscillators.Comment: 8 pages, 12 figures, 1 tabl

    The cool wake around 4C 34.16 as seen by XMM-Newton

    Full text link
    We present XMM-Newton observations of the wake-radiogalaxy system 4C34.16, which shows a cool and dense wake trailing behind 4C34.16's host galaxy. A comparison with numerical simulations is enlightening, as they demonstrate that the wake is produced mainly by ram pressure stripping during the galactic motion though the surrounding cluster. The mass of the wake is a substantial fraction of the mass of an elliptical galaxy's X-ray halo. This observational fact supports a wake formation scenario similar to the one demonstrated numerically by Acreman et al (2003): the host galaxy of 4C34.16 has fallen into its cluster, and is currently crossing its central regions. A substantial fraction of its X-ray halo has been stripped by ram pressure, and remains behind to form the galaxy wake.Comment: 9 pages, 6 figures, accepted for publication in MNRA
    corecore