10 research outputs found

    Can the X(3872) be a 1^{++} four-quark state?

    Get PDF
    We use QCD spectral sum rules to test the nature of the meson X(3872), assumed to be an exotic four-quark (c\bar{c}q\bar{q}) state with J^{PC}=1^{++}. For definiteness, we work with the current proposed recently by Maiani et al [1], at leading order in \alpha_s, consider the contributions of higher dimension condensates and keep terms which are linear in the light quark mass m_q. We find M_X=(3925+- 127) MeV which is compatible, within the errors, with he experimental candidate X(3872), while the SU(3) breaking-terms lead to an unusual mass-splitting M_{X^{s}}-M_X=- (61+-30) MeV. The mass-difference between the neutral states due to isospin violation of about (2.6-3.9) MeV is much smaller than the value (8+-3) MeV proposed in [1]. For the b-quark, we predict M_{X_b}= (10144+-106) MeV for the X_b(b\bar{b}q \bar{q}), which is much below the {\bar B}B* threshold in contrast to the {\bar B}B* molecule prediction [2], and for the X_b^s(b\bar{b}s \bar{s}), a mass-splitting M_{X^s_{b}}-M_{X_b}=-(121+-182) MeV. Our analysis also indicates that the mass-splitting between the ground state and the radial excitation of about (225~250) MeV is much smaller than in the case of ordinary mesons and is (within the errors) flavour-independent. We also extract the decay constants, analogous to f_\pi, of such mesons, which are useful for further studies of their leptonic and hadronic decay widths. The uncertainties of our estimates are mainly due to the ones from the c and b quark masses.Comment: 16 pages, 10 figures. Version to appear in Phys. Rev.

    Magnetic moment of the pentaquark Θ+(1540)\Theta^+(1540) with light-cone QCD sum rules

    Full text link
    In this article, we study the magnetic moment of the pentaquark state Θ+(1540) \Theta^+(1540) as diquark-diquark-antiquark ([ud][ud]sˉ[ud][ud]\bar{s}) state in the framework of the light-cone QCD sum rules approach. The numerical results indicate the magnetic moment of the pentaquark state Θ+(1540) \Theta^+(1540) is about ΌΘ+=−(0.49±0.06)ÎŒN\mu_{\Theta^+}=-(0.49\pm 0.06)\mu_N.Comment: 10 pages, 1 figure. The main contents of this article is included in hep-ph/0503007, this article will not be submitted to a journal for publicatio

    Z^* Resonances: Phenomenology and Models

    Get PDF
    We explore the phenomenology of, and models for, the Z^* resonances, the lowest of which is now well established, and called the Theta. We provide an overview of three models which have been proposed to explain its existence and/or its small width, and point out other relevant predictions, and potential problems, for each. The relation to what is known about KN scattering, including possible resonance signals in other channels, is also discussed.Comment: 29 pages, uses RevTeX4; expanded version (published form

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair

    QCD sum rules for the X

    No full text
    corecore