4,802 research outputs found

    Pneumatic interpretation in the renewal tradition: the first 50 years

    Get PDF
    This thesis is a consideration of the Spirit’s role in the interpretation of scripture (pneumatic interpretation) through a conversation surrounding this topic that has been taking place between scholars who are in, or who identify with, the renewal tradition (also known as the Pentecostal and charismatic movement[s]) since 1970 when renewed emphasis on and experience of the Spirit spurred hermeneutical conversations. Its purpose is twofold: 1) to build understanding of pneumatic interpretation through the voices of those involved in the conversation; 2) to foster appreciation and understanding between scholars across or identifying with the renewal tradition. A significant proportion of contributions to this conversation have been from those involved in Pentecostal hermeneutics but the thesis uses renewal terminology to reflect inclusivity of all scholars across or identifying with the renewal tradition who emphasise the Spirit and accentuate the Spirit’s role in hermeneutical considerations. The thesis stresses that central to pneumatic interpretation in the renewal tradition is priority placed on personal experience of and intimate relationship with the triune God through pneumatic encounter. Three integral, and dynamically interrelating components of this relationship are given attention: affect, ethics, and cognition. It also stresses that considering the Spirit’s role in scriptural interpretation requires contemplation of the relational nature of God from a pneumatic starting point. The thesis therefore asserts that pneumatic interpretation is holistic and cannot be restricted to interpretation of the scriptural text, because the Spirit always works through and beyond the written words interpreting and appropriating scriptural truth in our lives in ways that align with scripture and transform and draw us holistically into knowledge of God as Father, Son, and Spirit. In terms of structure, the thesis addresses the conversation chronologically to show historical and thematic progress

    New measurements of cosmic infrared background fluctuations from early epochs

    Get PDF
    Cosmic infrared background fluctuations may contain measurable contribution from objects inaccessible to current telescopic studies, such as the first stars and other luminous objects in the first Gyr of the Universe's evolution. In an attempt to uncover this contribution we have analyzed the GOODS data obtained with the Spitzer IRAC instrument, which are deeper and cover larger scales than the Spitzer data we have previously analyzed. Here we report these new measurements of the cosmic infrared background (CIB) fluctuations remaining after removing cosmic sources to fainter levels than before. The remaining anisotropies on scales > 0.5 arcmin have a significant clustering component with a low shot-noise contribution. We show that these fluctuations cannot be accounted for by instrumental effects, nor by the Solar system and Galactic foreground emissions and must arise from extragalactic sources.Comment: Ap.J.Letters, in pres

    Cosmic Infrared Background Fluctuations and Zodiacal Light

    Full text link
    We have performed a specific observational test to measure the effect that the zodiacal light can have on measurements of the spatial fluctuations of the near-IR background. Previous estimates of possible fluctuations caused by zodiacal light have often been extrapolated from observations of the thermal emission at longer wavelengths and low angular resolution, or from IRAC observations of high latitude fields where zodiacal light is faint and not strongly varying with time. The new observations analyzed here target the COSMOS field, at low ecliptic latitude where the zodiacal light intensity varies by factors of 2\sim2 over the range of solar elongations at which the field can be observed. We find that the white noise component of the spatial power spectrum of the background is correlated with the modeled zodiacal light intensity. Roughly half of the measured white noise is correlated with the zodiacal light, but a more detailed interpretation of the white noise is hampered by systematic uncertainties that are evident in the zodiacal light model. At large angular scales (100"\gtrsim100") where excess power above the white noise is observed, we find no correlation of the power with the modeled intensity of the zodiacal light. This test clearly indicates that the large scale power in the infrared background is not being caused by the zodiacal light.Comment: 17 pp. Accepted for publication in the Ap

    Thermal detectors as X-ray spectrometers

    Get PDF
    Sensitive thermal detectors should be useful for measuring very small energy pulses, such as those produced by the absorption of X-ray photons. The measurement uncertainty can be very small, making the technique promising for high resolution nondispersive X-ray spectroscopy. The limits to the energy resolution of such thermal detectors are derived and used to find the resolution to be expected for a detector suitable for X-ray spectroscopy in the 100 eV to 10,000 eV range. If there is no noise in the thermalization of the X-ray, resolution better than 1 eV full width at half maximum is possible for detectors operating at 0.1 K. Energy loss in the conversion of the photon energy to heat is a potential problem. The loss mechanisms may include emission of photons or electrons, or the trapping of energy in long lived metastable states. Fluctuations in the phonon spectrum could also limit the resolution if phonon relaxation times are very long. Conceptual solutions are given for each of these possible problems

    Educational Requirements of the Practising Public Accountant

    Get PDF

    Demonstrating the negligible contribution of optical ACS/HST galaxies to source-subtracted cosmic infrared background fluctuations in deep IRAC/Spitzer images

    Full text link
    We study the possible contribution of optical galaxies detected with the {\it Hubble} ACS instrument to the near-IR cosmic infrared (CIB) fluctuations in deep {\it Spitzer} images. The {\it Spitzer} data used in this analysis are obtained in the course of the GOODS project from which we select four independent 10×1010^\prime\times10^\prime regions observed at both 3.6 and 4.5 \um. ACS source catalogs for all of these areas are used to construct maps containing only their emissions in the ACS B,V,i,zB, V, i, z-bands. We find that deep Spitzer data exhibit CIB fluctuations remaining after removal of foreground galaxies of a very different clustering pattern at both 3.6 and 4.5 \um than the ACS galaxies could contribute. We also find that there are very good correlations between the ACS galaxies and the {\it removed} galaxies in the Spitzer maps, but practically no correlations remain with the residual Spitzer maps used to identify the CIB fluctuations. These contributions become negligible on larger scales used to probe the CIB fluctuations arising from clustering. This means that the ACS galaxies cannot contribute to the large-scale CIB fluctuations found in the residual Spitzer data. The absence of their contributions also means that the CIB fluctuations arise at z\gsim 7.5 as the Lyman break of their sources must be redshifted past the longest ACS band, or the fluctuations have to originate in the more local but extremely low luminosity galaxies.Comment: Ap.J.Letters, in press. Minor revisions to mathc the accepted versio

    Peroxisome Proliferator-activated receptor alpha gene variation influences age of onset and progression of type 2 diabetes

    Get PDF
    Dysregulation of fatty acid metabolism is important in the pathogenesis of type 2 diabetes. Peroxisome proliferator-activated receptor (PPAR) is a master regulator of fatty acid catabolism, and PPAR activators delay the onset of type 2 diabetes. We examined association between three PPAR gene polymorphisms (an AC variant in intron 1, the L162V variant, and the intron 7 GC variant) and age at diagnosis of type 2 diabetes in 912 Caucasian type 2 diabetic subjects. Individually, PPAR gene variants did not influence age at diagnosis, but in combination, the rare alleles of both the intron 1 AC (P < 0.001) and intron 7 GC (P = 0.025) variants synergistically lowered age at diagnosis (interaction P < 0.001). Overall, the PPAR haplotype signficantly influenced age at diagnosis (P = 0.027), with the C-L-C and C-V-C haplotypes (intron 1-L162V-intron 7) accelerating onset of diabetes by 5.9 (P = 0.02) and 10 (P = 0.03) years, respectively, as compared with the common A-L-G haplotype, and was associated with an odds ratio for early-onset diabetes (age at diagnosis 45 years) of 3.75 (95% CI 1.65–8.56, P = 0.002). Intron 1 C-allele carriers also progressed more rapidly to insulin monotherapy (AA 9.4 ± 1.5 and AC + CC 5.3 ± 1.1 years, P = 0.002). These data indicate that PPAR gene variation influences the onset and progression of type 2 diabetes

    Quantitative evaluation of polymer gel dosimeters by broadband ultrasound attenuation

    Get PDF
    Ultrasound has been examined previously as an alternative readout method for irradiated polymer gel dosimeters, with authors reporting varying dose response to ultrasound transmission measurements. In this current work we extend previous work to measure the broadband ultrasound attenuation (BUA) response of irradiated PAGAT gel dosimeters, using a novel ultrasound computed tomography system
    corecore