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Abstract

We show that sensitive thermal detectors should be useful for

measuring very small energy pulses, such as those produced by the

absorption of x-ray photons. 	 The measurement uncertainty can be very

small , making the technique promising for high resolution nondispersive

x-ray spectroscopy.

We derive the limits to the energy resolution of such thermal

detector ,5 .	 We use these to find the resolution to be expected for a

detector suitable for x-ray spectroscopy in the 100-10,000 eV range. 	 If

there is no noise in the thermalization of the x-ray, resolution better

than 1 eV full width at half maximum (FWM) is possible for detectors

operating at 0.1 K.

Energy .loss in the conversion of the photon energy to heat is a

potential problem.	 Statistical fluctuations of lost energy would reduce

the energy resolution of the detector.	 The loss mechanisms may include

emission if photons or electrons, or the trapping of energy in long-lived

metastable states. Fluctuations in the phonon spectrum could also limit

the resolution if phonon relaxation times are very long. 	 We give

conceptual solut. ons for each of these possible problems.
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I. Introduction

An ultimate goal for any spectrometer is to offer high resolving power

and throughput simultaneously over a wide energy range. 	 Silicon solid

state diode detectors used as x-ray spectrometers have good efficiency but

their resolution is only 100-200 eV. Wavelength dispersive spectrometers

offer resolution < 10 eV, but have low throughputs. 	 A thermal detector

operating at cryogenic temperatures can offer the high efficiency of the

solid state detector and resolution comparable to that of dispersive

spectrometers.

Bolometers have been used for many years as infrared detectors (Low,

1961) . Recent work 102,3 shows that at temperatures as low as 0.32 K, the

dominant noise in properly constructed devices is due to the thermodynamic

fluctuations in the device itself'.

The energy sensitivity of a thermal detector scales as T/T where T is

the operating temperature and C the detector heat capacity.	 Practical

designs for detectors can be made using the substantial body of low temper-

ature data existing in the literature. An operating temperature of 0.1 K

has been chosen as the design temperature because it permits the desired

resolution, and it can easily be achieved with an adiabatic demagnetization

refrigerator operating with a 2 K heat sink. Also, experimental data show

that the heat capacities of many of our candidate materials decline quite

slowly or actually increase below 0. 1 K.

2
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We will demonstrate that the noise in the front end amplifier junction

field effect transistor CJFET) and load resistor need not seriously affect

the resolution.

The performance of a bolometer as an x-ray spectrometer depends on the

noiseless conversion of the x-ray to heat. If some fraction of the energy

is lost, that fraction need not be exactly constant from photon to photon.

This will degrade the resolution of the spectrometer. We will discuss

potential loss mechanisms and techniques for combatting them.

II. Theory of Operation

r A typical bolometer detector has three parts: an energy absorber, a

semiconducting thermometer, and a support structure to carry away the
i

applied heat and establish electrical contact to the thermometer. A design
f

for such a detector is given in Figure 1 and discussed in Section TV. The

detector temperature is measured by applying a DC bias voltage to the

series combination of the thermometer and a load resistor. 9nall varia-

tions in the thermistor voltage are measured using a low noise amplifier,

whose first stage is usually a JFET source follower mounted near the

detector but operating at about 80 K.

The basic Theory of these detectors has been summarized. 
4,5 A more

complete theory has been given by Mather, 6 and optimization for their use

as power detectors has been carried out.7

Ii i
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Resolution

An order of magnitude estimate of the possible energy resolution is

given by the thermodynamic energy fluctuations in the detector. From the

derivatives of the partition function for a system, one finds easily that

OU2> = k BT 2C,	 (1)

regardless of the details of the system. Here, AU is the spontaneous

energy flu, tuation of the detector, T its temperature, and C its heat

capacity, and k  is Boltzmann's constant. One can understand this in a

handwaving way by saying that the effective number of phonon modes in the

detector is N C/k B, the typical phonon mode has quantum occupation number

1, rms fluctuation of 1 phonon, and mean energy of kT. Then the mean

square energy fluctuation is (k BT) 2 N _ k B T 2C. We show below that this

expression differs from the resolution achievable in practice only by a

numerical factor of ,, 2.

In addition to these thermodynamic fluctuations, or phonon noise, s
f

more complete derivation of the energy resolution must consider Johnson i
noise in the thermistor, thermistor responsivity, the effects of 	 j

temperature gradients	 in	 the thermal link	 produced	 by	 the	 applied	 bias	 1

power, and optimization of the signal
w

shaping filters.	 We first discuss an

approximate solution	 to	 this problem in the time domain to give a clear

illustration of the nature of these effects. The exact solution is reached

more readily from	 an analysis in the frequency domain,	 for which we will

adapt the results of Ref. 6 and 7 to the case where the input signal is

assumed to be a delta function.

4
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We model the detector as an absorber of heat capacity C with a

temperature sensor attached. The absorber is connected to the heat sink

through a link of thermal conductance G.	 An x—ray photon of energy U

incident on the absorber will be absorbed and thermalized. The temperature 	 R

of the detector element rise's by AT = U/C following the absorption c.f the

photon. The heat flows to the heat sink through the conductive link and

the detector element approaches the bath temperature exponentially with a

time constant T : C/G. In a practical detector, the time constant of the

output pulse is changed from the physical time constant T by electrothermal

feedback to an effective time constant T e . 6 Therefore in the time domain,

an impulse o1' energy U at time t = 0 produces a decaying exponential pulse

of voltage

t/ T

V(t) _ U S(0) e	 e 	 (2)T
e

i
where S(0) is the detector responsivity at zero frequency (measured in

volts/watt) .

Given the output pulse shape following the absorption of an x—ray, the ^'+

choice of an optimal shaping filter depends on the spectral characteristics

of	 the	 detector	 noise.	 In	 this	 instructive example	 we will	 devise	 a

solution	 for	 a	 white	 noise	 spectrum. For practical detectors	 using
f

ser: iconducting	 thermistors,	 the	 assumption of white noise is	 quite good;

the phonon noise and Johnson noise powers have substantial frequency
1

dependence, but their quadrature sum' does not. 6	We will divide our

exponential pulse into intervals of width At. The estimates of U in each
f

interval will be averaged with weights proportional to the squares of their

5
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signal to noise ratios. Since the noise is white, each of these intervals

is a statistically independent estimator of the signal. 	 The weighted

average of all these is the best estimator of t , e total energy.	 The

expression for the total signal derived in this way is

-t/Te

^

	

S(0) J	
eT 	

V(t) dt.	 (3)

	

o	 e

In a digital signal processor, the integral can be done very easily. In

the analog electronics domain, it would require passing the signal through

a filter which is a time reversed (non causal) single pole RC low pass

filter. This ideal filter has the same noise bandwidth as the ordinary RC

filter, B = (4 T e ) -1 . Since the detector has a white noise with spectral

density en 2 , the rm s output of the filter in the absence of pulses is

2T

AUrm3 = e n 3B . S(0) ° NEP`O) . 3 T e ► 	 (4)

where the noise equivalent power of the detector at zero frequency is

defined by NEP(0) = en /S(0) .	 This analysis implicitly assumes that the

moment of arrival of the pulse is known. For high signal to noise pulses,

this assumption is ,justified.

For the actual case in which the noise is not exactly white, the

analysis is done more readily in the frequency domain. Here, a measurement

of the noise in each frequency interval of is statistically independent of

measurements in other intervals as long as the noise is stationary.

The result in Eq. 3 can be written in the frequency domain

i
r	 t

Fn

F

i

m

AU Ms =	 !
0

4df	 -1/2

NEP 2 ( f)
(5)
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For NEP2 (f) = NEP2(0) Cl + w 2 Te 23, the white noise voltage case, this

yields the some result as above. This formula gives greatest weight to

frequency regions where the NEP is small. In the frequency domain, the

random temperature variation of the element gives rise to NEP phonon

4k BT2G (for an element at thermal equilibrium), where G is the thermal

conductance to the heat sink. It is independent of frequency, so if it

were the limiting noise source over an extreme bandwidth (much larger than

1 /Te), the detector resolution could be much smaller than ( kBT 2C) 1/2. This

possibility is not yet of practical importance, since it requires

temperature transducers much better than the semiconducting thermistor.

Optimization

We will now give detailed formulas, for the NEP in the ideal bolometr,

proceed to the energy resolution, and finally compute the optimum bias

conditions and ultimate energy resolution of the detector. This work is

based directly on Ref. b and parallels similar optimization calculations

for infrared detectors.7

The square of the NEP for	 ideal detector, in which amplifier noise

and noise from the load resistor can be neglected, can be written

	

NEP2
 =NEP Johnson +NEPphonon' 	

(b)

wher e

2	 2	 T [t'k(t')	 / T k(t')
NEPphonon =N1= 4kBGT	

T 	 Tk(T) 	 dt1 T [k(T)] 
dt',	 (7)

c	 c

NEP Johnson- N 2
0+W2 T 2 ) ► 	 (8)

r
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and	 N2 4kBTP CZ^12	 (9)

In these formulas, teems are defined as follows: 	 T is the element
M

temperature, T  is the heat sink temperature, G is the differential thermal

conductance of the heat link defined as the derivative of the conducted

power with respect to element temperature T, and k is the function

describing the temperature dependence of the thermal conduetivit,v of the
t

heat link material. In the Johnson noise formula, P is the do bias power

dissipated in the element, R is its resistance (= E/I), where E is the bias

voltage and I is the bias current, Z is the differential impedance dE/dI,

and A is given by A dlog R It is assumed here that R is a function ofdlog T

temperature alone. The physical time constant T is given by C/G, and is

distinct from the effective time constant re that governs the pulse

response in Eq . 2.

Since the frequency dependence of the terms in NEP 2 are simple, the
t

energy resolution can be computed easily as

AUrms = ,T1/2 (N 2 (K +N2 1/4	 (10)

To proceed further, we need to parametrize electrical and thermal

characteristics of the detector. We shall assume that the heat capacity,

the resistance of the detector, and the thermal conductivity of the support
1

wires are power laws in temperature: the heat capacity C C o ty , where c
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is the heat capacity at the bath temperature T o , the reduced temperature is

= T/Tc , the resistance is R = R  CA , and the heat link conductivity is k

oto . Note that t is not the time t used in Eqs. 2 and 3.

We now wish to determine N 1 arid. N 2 in terms of these parameters. We

to ke

oLp
dT

X
G	 = k(T)	 L! dx/A(x)^_

1
=	 G (Tc ) to	 (13)

0

from	 Eq.	 24	 of	 Ref. 7 where	 A	 ( x)	 is cross	 section	 area	 of the	 link,

Substituting	 P = Br = I 2R (T)	 into	 the heat balance equation permits the

calnulation of static current-voltage curves and the dynamic response to an

energy	 impulsfi p	 and leads	 to	 F.q.	 2.	 Using	 Eq. '13,	 and	 the	 parametric

representation for	 R(t) , extensive algebraic manipulation yields

-z = -GT/PA (14)

and	 P	 GT (1 -t_ (a+1) )/(0+1) 	(15)

so that we can find

N2 = 4k  TP(GT/PA)2

	4k BTG 2 t 2 G(a+1)/A 2 0	 t-(a+1)).	 (16)

The value of N 1 is found more directly from the defining integrals as

4t B T 2Gt 2 0 _t-(3+2a) )(0+1)
N =	 C(177

1	 (3+2o)(1-t- 6+ )

When these expressions are substituted into Eq. 10, we obtain the

final formula

9



2
	

4(0+1 )t	 (1-t	 )A
A U

rm a	 (kB TC Co) A (1-t9 +  )

Note the very important fact that the thermal conductance G and the time

• constants T and ie have disappeared entirely from the equation. This means

that there is no sensitivity penalty nor advantsae to fast or slow

detectors, and heat link parameters may be chosen to satisfy other°

constraints (e.g. counting rates) .	 Moreover, the resolution is a

dimensionless factor multiplying the fundamental thermodynamic fluctuation

(kBTJCo ) 1/2 . Finally, it is important to note that. as A approaches

infinity, AU Ms 
tends to zero as VA1/2 p confirming the statement made

above that the measurement unctet, tainty can be less than the thermodynamic

energy fluctuations of Fiq. 1.

	The detector reduced temperature t is the onl y variable in Eq. 10	 j

which is not already fixed by the available refrigerator (TO or the

	

detector construction (Co , A, S, y) . The value of t is determined by the 	 . 'f

DC bias power applied. A simple numerical optimization may be easily

performed on the expression, yielding both the desired operating

temperature and the ultimate sensitivity given the constraints.

4

	

An optimum bias power exists because low values of t correspond to low 	 j

bias currents and low detector response, reducing the signal below the ii

level of the Johnson noise in the thermometer resistance, while high values

•	 of t increase the random thermal fluctuation of the detector energy.

10



A►

t

Values of A from 2 to 10 are typical for semiconducting thermomaters,

although A w —100 to —1000 can be achieved for superconducting transition—

edge detectors. Valuers of 0 are typically 1 for metals, and 3 for

dit^3ectric crystals, while Y will be 1 for normal metals and 3 for pure

dielectric crystals and for superconductors well below their transition

temperatures.

The results of the optimization for several valueR of y and o are

given in Fig. 2. The optimal temperature t changes only slightly with At

and AUrms ' ;(kBTc2co)1/2 is also a weak function of A for A > 2.

III.	 Amglifl.er Noise and L oad Resistor

71Y e	 optimization	 we	 have	 carried	 out does not	 include	 the amplifier

noise	 contribution	 to	 total	 system	 noise. This can be justified because'

for proper choice of detector resistance and amplifier JFET, the amplifier

noise can be made	 small compared	 to	 the Noise of the detector, even for
detector temperature as low as 0. 1 K.

ir i

According to Mather's noise theory, h the Johnson noise of a bolometer

can be reduced by electro-thermal feedback for w T	 < 1 by as much as 50%.

R-,wever, in	 this	 frequency	 range	 the	 detector	 also	 detects	 its	 phonon`	 {

noise,	 so that the total voltage noise in the signal band of the detector 	 !

(wT<1)	 is found to be greater than the Johnson
1

noise in a resistor of equal

resistance operating	 at the same temperature. We will compare this noise 	 t

to	 that of	 the	 amplifier	 for two	 cases: 1)	 where	 the	 bolometer'*s

11
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resistance can be chosen to minimize the affeots of amplifier noise t and 2)

where the bol.ometer must be s 10 MA to prevent Long electrical time
}4

1

tl

constants due to stray capacitance.

Y

The JFETs typically used as bolometer amplifiers (2N4867A) have

voltage noise e n (f)s 5x10'9 V/,/Hz, while measurements in our laboratory

give a current noise i n (f) < 3x1017 AIVHz. The value of input resistor

for which the ratio of total amplifier noise to resistor Johnson noise is a

minimum can be shown to be Rn e n/in. For our typical devices Rn w+

1.7x108 A. The Johnson noise is

e J (f)	 (4 k E TR)1/2 V/Y'Hz.	 (19)

The corresponding total amplifier noise is

e  (f) = (i n 2 (f) R 2 + en2 (f)) 1/2 V/'/Hz.	 (20)

If we are free to choose R = Rn , and if our detector noise temperature

is 0.1 K, the amplifier voltage contribution is less than 25% of the

detector noise. Added in quadrature, it proauces less than a 3% increase

in system noise. If we are forced to choose a resistance near 10 MA for

the device, the amplifier noise voltage is 67% of the detector noise,

resulting in a 20% increase in system noise. These are upper limits to the

effects of amplifier noise, since in practice the bias power can be

adjusted slightly to a point which is optimum in the presence of the

additional voltage noise.

n

12
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Load resistor noise cannot be avoided, but can be made negligible by

choosing the !resistance much larger than the detector resistance. If the

load res stor i.s 10 times the detector resistance and operates at the

detector heat sink temperature, it increases detector noise about 5%• A

more complete discussion of the load resistor noise contribution is given

in Ref. 7.

IV. Ste' e Detector Design

We have calculated the characteristics of a complete detector desir n

as an example of the performance which might be obtained in practice.

Rather than trying to achieve the ultimate in resolution, we have chosen a

design which uses established integrated circuit fabrication and silicon

etching techniques at tolerances well within their routine capabilities.

All materials used have well-known thermal properties, with measured values

near the proposed operating temperature available from the literature. the

detector construction is, shown in Fig. 1, and the heat capacities of each

component are gi:ten in Table 1.

a

The thickness of the absorber is chosen to have reasonable stopping

efficiency for x-rays up to q ke V, and the 0.5 mm x 0.5 mm size is suitable

for use with many focussing instrtments. With all addenda, the net heat

capacity is then 5.8x10 -15 J/K at 0.1 K, resulting in thermodynamic energy

fluctuations of 0. 18 eV ms. For an effective Y equal to 2.4 and 6 = 3,

the results of the previous section give an energy resolution of 1.1 eV 	 i

FWMO where we have assuned a conservative value of 4.0 for A (the
a

logarithmic temperature sensitivity of the thermistor). The time constant

T is about 300 usec, giving an NKP of the order of 5x10-18 w/1/2^

13
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V. Detector Efficiency Variations and Resolving Power Limits

At least five processes may modulate the responsivity of the detector.

'Random variations of these factors can limit the resoj ,'- ing power (U/DU) of

the detector. These factors are: 1. The x-ray energy may be r,..arried by a

photoelectron which escapes from the detector before depositing its full

energy. 2. Excited electrons and excitons may emit photons which escape

from the detector. 3. Energy may be held in metastable states that are

long-lived with respect to the readout process. 4. The deposited energy

may not be uniformly converted into a thermal spectrum o ^h'iOns before

the phonons leak out through the support legs. 5. The detector may have a

nonuniform response a.;ross its face, related to the proportion of the

deposited energy which reaches the thermometer before going down the

support legs.

Photoelectron Escape

A few photoelectrons produced near the detector surface will escape

through that surface without depositing their full energy. The Fraction

which escapes is of the order of ke/1, X , where R e is the electron range and

Z  
is the x-ray mean free path. This is maximum just above an absorption

edge, and for Si at 1.6 KeV is s 6%. In principle this could be overcome

or improved by coating the detector with a low Z material, having a very

low ke /,t x .	 However, choices are limited by heat capacities at low

temperatures .

z

i

i
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Radiative Losses

The interaction of an x-ray with a Si crystal results in approximately

30% of the energy being converted to free holes and electrons, with the

rest of the energy being converted directly to phonons. Many of the free

holes and electrons form excitons, bound hole -electron systems, which decay

by emitting phonons, photons, or Auger electrons. Most excitons decay by

channels which give rise to rapid thermalization, but some small fraction

may decay radiatively. Si is quite transparent to those photons and they

can escape from the detector. If on the ave • age N of these photons escape,

their statistics would limit the energy resolution to v, (N) 1/2 eV.

Fortunately, most excitons decay rapidly by nonradiative processes.

Hale-electron recombination on a neutral donor is very fast and in the case

of As in Si decays by an Auger process within 80 ns. 81 9 The radiative

lifetime for such a recombination is 750 us, so radiative decay is very

unlikely.	 hbwever, , there are same traps for which the Auger process is

forbidden, and thus have a reasonably high radiative efficiency. 	 Some

solutions to this potential radiative loss problem are to 1) produce

material without radiatively efficient traps, 2) put a sufficient number of

neutral donors in the crystal to dominate undesirable traps, or 3)

metallize the external surface of the detector with aluminum to prevent

loss of photons created by radiative decays. Detailed studies of radiative

los.o and heat capacity as a function of donor concentration could be

necessary if radiative loss is important.

15
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Metastable States

Another potential difficulty is that the thermalization of part of the
a

deposited energy may be delayed beyond the readout time, resulting in lost

energy, with the statistical fluctuations which this implies. Long

hole-electron recombination times or long excitors decay time would result

in the delayed, thermalization. However, if a sufficient donor concentra-

tion can be tolerated, the exciton recombination rate will be fast.8

If undesirable trapping centers cannot be eliminated or swamped by

short-lived sites, it should still be possible to reduce their effects by

"flashing" the device to fill the undesirable traps and prevent loss of	 ,

signal.

Nonthermal Phonon Spectrum

A fourth potential problem is the fact that the spectrum of phonons in

the detector following the incidence of an x-ray may be highly nonthermal.	 x,

Measurements of bulk CaF 2 at 4 K following the impact of an energetic

electron shows that after 100 rns the spectrum has relaxed to that of a gray 	 0 

body at about 30 K.	 The spectrum changes little more for times as long as

2 ps. 10 Therefore, it is possible
J

that the spectrum in our detectors might

also remain nonthermal	 for	 a time scale on	 the order of	 100 µs.	 If	 the

spectrum has relaxed	 to as low a temperature as	 30 K,	 however,	 it	 seems

that the	 relative	 statistical	 fluctuations in	 all subsequent	 processes	 i

would be limited	 to	 the square root of the number of phonons existing at

this temperature as a worst case. This would result in about a 4 eV FWHM

uncertainty in the response to a 6 keV x- ray.	 Given the large surface to

volume ratios for these thin detectors, the spectrum may thermalize more

16



rapidly. The importance of this problem depends on how the thermometers

work: if the resistance change of the thermometer is simply a function of

the elastic strain energy density, then it should make no difference what

spectrum the phonons have.	 If single quantum processes are important

(phonon-assisted hopping) 0 the spectrum may be relevant.

Thermal Uniformity

Since the phonon mean free path in the pure silicon absorber at 0. 1 K

is much larger than the dimensions of the device, the thermal conductivity 	 }

is limited by the smallest dimension. The thermal diffusion time Td across y

the 0.5 mm square absorber is then s 2 us if we assume completely diffuse

reflection of phonons at the silicon surfaces.	 However, these etchedr

surfaces are very smooth on the scale of a mean phonon wavelength. Per fect%

specular reflection of phonons would shorten the diffusion time to s 0.2n'

ti,s.	 To ensure uniform response across the surface of the detector, the

thermal time constant ( T = C/G) must be long in comparison with thi3..
i

equilibration time for the absorber which is on the order of the phonon	 i.

crossing time. The fractional variation of response across the face of the

detector could be 
T d
/T if no special techniques are employed. The surfaces

of the support legs could be roughened by an anisotropic etch, if

necessary, to ensure diffuse reflection and decrease their conductance.-,a

The resulting thermal time constant using the roughened legs is s 300 us:.

If specular reflection reduces the absorber relaxation time, the support
i

legs could be shortened to increase G somewhat and allow higher counting

rates. It will be difficult to Provide sufficiently fast amplifier input*:=

risetimes for detector time constants much shorter than 100 us, however,".

since the detector resistance must be 107 n or greater to provide an .,

17
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adequate match to the JIFET noise impedance, and stray capacitances amount

to several pF.

a

We have one concept for measuring the energy deposited in the

detector, with a constant responsivity regardless of the location of the

E x-ray. The detector in Fig. 1 would be modified to have four matched

thermometers located at the corners of the silicon absorber and connected

in series. The four thermometer regions detect the heat as it flows out of

the absorber, and their outputs are added, since they are connected in

series. If all the thermometer regions are identical and all the support

legs are identical, then the area under the detected pulse shape is

strictly proportional to the deposited energy. While pulse shapes may vary 	 a

slightly as a function of the x-ray position, the total energy should be 	 r

correctly determined.

We have proposed several effects which may contribute to the

uncertainty of the energy of an incident photon. These sources of

tt thermalization noise t' are discussed, and possible remedies are suggested.

Preliminar y experimental results on a detector have not shown any large

nonthermal effects of this type. 	 tests did not have enough

sensitivity to be definitive for a potential 1 eV FWHM detector, however,
i

r	 so a final answer must await further experiments. Given the low efficiency

--	 of radiative exciton decays, and the evidence for prompt recombination, we

believe these two problems will not be serious. The effects of a possible

nonthermal phonon spectrum are not known, but experimental results are in 	 i
good quantitative agreement with the response expected for a fully

thermalized phonon spectrum.11

18	
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VI. Summary

We propose a thermal detector as an efficient high resolution x-ray

spectrometer. A theory for the resolution of the detector as a function of

its physical parameters has been presented. For a given detector design

and cryostat temperature, the detector temperature, controlled by its bias

power, is the only free parameter. We derive the maximum resolution of a

given detector for the optimal value of this parameter. The model assumes

that the Johnson noise dominates all other noise sources in the therm13torp

which has been shown to be the case in other work. This and thermodynamic

fluctuations in the detector temperature represent the major noise sources

in detectors of this kind. We show that amplifier noise is not a serious

problem.

A design is given for a detector capable of operating with good

efficiency up to energies of 9 KeV. Assuming noiseless t'nermalization of

the x-ray energy, a resolution of 1.1 eV FWHM is achievable with this

device at a heat sink temperature of 0. 1 K.	 Y'

We discuss the possibility of excess noise c3usei by statistical

fluctuations in any energy

delayed. Several mechanisms

loss, and possible solutions

understand the magnitude of t

our proposed solutions.

which is lost or whose thermalization is

	

are suggested which may give rise to anergy	 j

are presented. Further work is required to

	

hese possible effects and the effectiveness of	 I

p
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We believe these detectors show great promise as high resolution x-ray

spectrometers and as sensitive microcalorimeters for other measurements.

Further laboratory work is necessary to define the limits to their utility.
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TABLE I

THERMAL PROPERTIES OF THE DESIGN ILLUSTRATED IN FIG. 1

Component	 Volume	 Neat Capacity at 0.1 K

(cm3 )	 (J K -1 )

Intrinsic silicon	 6.7x10 6	 4.5x10 -15 (a)

Thennistor implant	 1.0x10-9	 8.6x10-16 (b)

Implanted arsenic contacts	 2.0x10'_10	 1.70016 (c)
s

Aluminum metalization	 3.4x10!9	 2.4x10-16 (d,e,f)

Total, heat capacity at 0.1 K: Co = 5.8x10-15 J K-1

Thermal conductivity of silicon support legs at 0.1 K: o = 1.8x10-11 watts CC

Thermal time constants Ir th 
n 

CG 	 Ps

(k$T02C0 ) 1 /2 = 2, 8x10`20 J = 0. 18 eV

From optimization, as in Fig. 2, C = 2.56 (For Yeff	 2. 4, 6 ° 3, A = 4)

Energy resolution: BEMs	0.45 eV, or 1.1 eV FWHM

a Aebye specific heat with TD = 630 K was used. By analogy, for high purity
"Ai

Ge, the 0.1 K specific heat is equal to the Debye value for short time T ,r

100 µs, but is about double this value for long times T > 10 ms (M.T.

Loponen, R. C. Dynes, V.	 Narayanamurti, and J. P.	 Garno, Phys. Rev.	 B,	 259

No. 2, 1161 (1982) .

b J. R. Marko and J. P. Harrison, Phys. Rev. B, 10, 2448 (1974)•

c Specific heat from free—electron Fermi gas model.

d N. E. Phillips, Phys. Rev., 114, 676 (1959)•

e N. E. Phillips, Ann. Acad. Sci. Fennicae, A VI, 11210 (1961),

f 0.5% of aluminum was assumed to be in normal state due to unavoidable trapped'

flux .
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Figure Captions

Figure 1. Concept fdr 1.1 eV FWHM spectrometer.	 Meat capacities of

component materials are listed in Table 1. The design of the

device is similar to devices described in Ref. 1 0 which gives a

detailed discussion of the fabrication procedure.

Figure 2. Optimal detector performance and operating temperature as a

function of A	 —d log R/d log T. t o T/ 
c 

is the fractional

temperature rise of the detector at the optimal operating point.

C o C tY , G = G t 0 . 
AU rm s	 B o o

: 9(k T 2C )1/20	 o	 rm s
where AU	 is the

rms uncertainty in the measurement of photon energy. Note C is

almost independent of $ and y.	 For A < 2, C a A-1 , for A > 2,

C a A -1 /2 .	 Note that for 7	 1, there is less heat capacity

penalty for operating at higher t, so the optimal value of t is

higher than for 7 = 3.

+1
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