87 research outputs found

    The use of the triptycene framework for observing O⋯C=O molecular interactions

    Get PDF
    The triptycene skeleton has been used to measure (1,5) interactions between aldehyde groups, placed at both sp³ centres, and hydroxy or methoxy groups, placed at the respective ortho position on a benzene ring; HO⋯CHO interactions of 2.621–2.624 Å and MeO⋯CHO interactions of 2.528–2.584 Å were observed with the O⋯C vector making angles of 105.3–133.7° with the carbonyl bond. The lack of a competing conjugation with the framework for the electrophilic group is a favourable factor compared to the use of peri-naphthalene systems

    Synthesis and characterisation of phosphorescent rhenium(I) complexes of hydroxy- and methoxy-substituted imidazo[4,5- f ]-1,10-phenanthroline ligands

    Get PDF
    Eight new fluorescent ligands (L1-L8) derived from the fused imidazo[4,5-f]-1,10-phenanthroline core, have been synthesised utilising a one-pot methodology. The ligands include two points of structural variety, allowing multiply-substituted aryl groups (including hydroxy and methoxy moieties) to be attached to the ligand core. The ligands L1-L8 are fluorescent (λem = 399–426 nm) and react with pentacarbonylbromorhenium to give coordination complexes of the form fac-[ReBr(CO)3(NˆN)] (where NˆN = L1-L8). The complexes were characterised using a variety of spectroscopic and analytical techniques, including single crystal X-ray diffraction studies on two examples. The rhenium complexes were all found to be luminescent, revealing classical 3MLCT emission at 579–587 nm in aerated solution with corresponding lifetimes in the range 149–166 ns

    To bend or not to bend – are heteroatom interactions within conjugated molecules effective in dictating conformation and planarity?

    Get PDF
    We consider the roles of heteroatoms (mainly nitrogen, the halogens and the chalcogens) in dictating the conformation of linear conjugated molecules and polymers through non-covalent intramolecular interactions. Whilst hydrogen bonding is a competitive and sometimes more influential interaction, we provide unambiguous evidence that heteroatoms are able to determine the conformation of such materials with reasonable predictability

    CO2 as a reaction ingredient for the construction of metal cages:a carbonate-panelled [Gd6Cu3] tridiminished icosahedron

    Get PDF
    A CO32--panelled [(Gd6Cu3II)-Cu-III] cage conforming to a tridiminished icosahedron is synthesised by bubbling CO2 through a solution of Gd-III and Cu-II ions

    5-iodo-4-thio-2′-deoxyuridine: synthesis, structure, and cytotoxic activity

    Get PDF
    The novel nucleoside 5-iodo-4-thio-2′-deoxyuridine (4) was synthesized and fully characterized by IR, NMR, and MS. Its structure was determined by single-crystal X-ray diffraction. Compound 4 absorbs strongly at 346 nm and is minimally toxic to human tumour cells, but its cytotoxicity is substantially enhanced by low dose UVA radiation. The combined use of 4 and UVA offers a promising route to selectively and effectively kill proliferating cells

    Aryl, bi-functionalised imidazo[4,5-f]-1,10-phenanthroline ligands and their luminescent rhenium(I) complexes

    Get PDF
    Five new imidazo[4,5-f]-1,10-phenanthroline based ligands (1–5) have been synthesised and characterised. The facile synthesis of 1–5 allows two regiochemical points of structural variety allowing highly conjugated and bulky aryl groups of varying functionalities, including azobenzene, trityl and terpyridine constituents, to be attached to the ligand core. 1–5 are fluorescent (λem = 410–415 nm), and react readily with [ReBr(CO)5] in toluene to give neutral coordination complexes of the form fac-[ReBr(CO)3(1–5)]. The series of complexes was characterised using a variety of spectroscopic and analytical techniques. Two examples of this series were characterised in the solid state using single crystal X-ray diffraction which confirmed the octahedral geometry and formulation. Photophysical studies showed that fac-[ReBr(CO)3(1–5)] are phosphorescent in solution under ambient conditions, revealing visible emission (558–585 nm) in aerated solution with corresponding lifetimes in the range 149–267 ns. These attributes are consistent with a triplet metal to ligand charge transfer (3MLCT) emitting state

    Efficient NiII2LnIII2 electrocyclization catalysts for the synthesis of trans-4,5-diaminocyclopent-2-enones from 2-furaldehyde and primary or secondary amines

    Get PDF
    A series of heterometallic coordination clusters (CCs) [NiII2LnIII2(L1)4Cl2(CH3CN)2] 2CH3CN [Ln = Y (1Y), Sm (1Sm), Eu (1Eu), Gd (1Gd), or Tb (1Tb)] were synthesized by the reaction of (E)-2-(2-hydroxy-3-methoxybenzylidene-amino)phenol) (H2L1) with NiCl2·6(H2O) and LnCl3·x(H2O) in the presence of Et3N at room temperature. These air-stable CCs can be obtained in very high yields from commercially available materials and are efficient catalysts for the room-temperature domino ring-opening electrocyclization synthesis of trans-4,5-diaminocyclopent-2-enones from 2-furaldehyde and primary or secondary amines under a non-inert atmosphere. Structural modification of the catalyst to achieve immobilization or photosensitivity is possible without deterioration in catalytic activity

    O- vs. N-protonation of 1-dimethylaminonaphthalene-8-ketones: formation of a peri N–C bond or a hydrogen bond to the pi-electron density of a carbonyl group

    Get PDF
    X-ray crystallography and solid-state NMR measurements show that protonation of a series of 1-dimethylaminonaphthalene-8-ketones leads either to O protonation with formation of a long N–C bond (1.637–1.669 Å) between peri groups, or to N protonation and formation of a hydrogen bond to the π surface of the carbonyl group, the latter occurring for the larger ketone groups (C(O)R, R = t-butyl and phenyl). Solid state 15N MAS NMR studies clearly differentiate the two series, with the former yielding significantly more deshielded resonances. This is accurately corroborated by DFT calculation of the relevant chemical shift parameters. In the parent ketones X-ray crystallography shows that the nitrogen lone pair is directed towards the carbonyl group in all cases

    Mapping of N−C bond formation from a series of crystalline peri‐substituted naphthalenes by charge density and solid‐state NMR methodologies

    Get PDF
    A combination of charge density studies and solid state nuclear magnetic resonance (NMR) 1JNC coupling measurements supported by periodic density functional theory (DFT) calculations is used to characterise the transition from an n–π* interaction to bond formation between a nucleophilic nitrogen atom and an electrophilic sp2 carbon atom in a series of crystalline peri‐substituted naphthalenes. As the N⋅⋅⋅C distance reduces there is a sharp decrease in the Laplacian derived from increasing charge density between the two groups at ca. N⋅⋅⋅C = 1.8 Å, with the periodic DFT calculations predicting, and heteronuclear spin‐echo NMR measurements confirming, the 1JNC couplings of ≈3–6 Hz for long C−N bonds (1.60–1.65 Å), and 1JNC couplings of 2.1 Å

    A multinuclear solid state NMR, density functional theory and X-Ray diffraction study of hydrogen bonding in Group I hydrogen dibenzoates

    Get PDF
    An NMR crystallographic approach incorporating multinuclear solid state NMR (SSNMR), X-ray structure determinations and density functional theory (DFT) are used to characterise the H bonding arrangements in benzoic acid (BZA) and the corresponding Group I alkali metal hydrogen dibenzoates (HD) systems. Since the XRD data often cannot precisely confirm the proton position within the hydrogen bond, the relationship between the experimental SSNMR parameters and the ability of gauge included plane augmented wave (GIPAW) DFT to predict them becomes a powerful constraint that can assist with further structure refinement. Both the 1H and 13C MAS NMR methods provide primary descriptions of the H bonding via accurate measurements of the 1H and 13C isotropic chemical shifts, and the individual 13C chemical shift tensor elements; these are unequivocally corroborated by DFT calculations, which together accurately describe the trend of the H bonding strength as the size of the monovalent cation changes. In addition, 17O MAS and DOR NMR form a powerful combination to characterise the O environments, with the DOR technique providing highly resolved 17O NMR data which helps verify unequivocally the number of inequivalent O positions for the conventional 17O MAS NMR to process. Further multinuclear MAS and static NMR studies involving the quadrupolar 7Li, 39K, 87Rb and 133Cs nuclei, and the associated DFT calculations, provide trends and a corroboration of the H bond geometry which assist in the understanding of these arrangements. Even though the crystallographic H positions in each H bonding arrangement reported from the single crystal X-ray studies are prone to uncertainty, the good corroboration between the measured and DFT calculated chemical shift and quadrupole tensor parameters for the Group I alkali species suggest that these reported H positions are reliable
    corecore