30 research outputs found
Heterogenized Iridium Water-Oxidation Catalyst from a Silatrane Precursor
A pentamethylcyclopentadienyl (Cp*) iridium water-oxidation precatalyst was modified to include a silatrane functional group for covalent attachment to metal oxide semiconductor surfaces. The heterogenized catalyst was found to perform electrochemically driven water oxidation at an overpotential of 462 mV with a turnover number of 304 and turnover frequency of 0.035 s^(–1) in a 0.1 M KNO3 electrolyte at pH 5.8. Computational modeling of the experimental IR spectra suggests that the catalyst retains its Cp* group during the first hour of catalysis and likely remains monomeric
<i>ABCB1</i> (MDR1) induction defines a common resistance mechanism in paclitaxel- and olaparib-resistant ovarian cancer cells
BACKGROUND: Clinical response to chemotherapy for ovarian cancer is frequently compromised by the development of drug-resistant disease. The underlying molecular mechanisms and implications for prescription of routinely prescribed chemotherapy drugs are poorly understood. METHODS: We created novel A2780-derived ovarian cancer cell lines resistant to paclitaxel and olaparib following continuous incremental drug selection. MTT assays were used to assess chemosensitivity to paclitaxel and olaparib in drug-sensitive and drug-resistant cells±the ABCB1 inhibitors verapamil and elacridar and cross-resistance to cisplatin, carboplatin, doxorubicin, rucaparib, veliparib and AZD2461. ABCB1 expression was assessed by qRT-PCR, copy number, western blotting and immunohistochemical analysis and ABCB1 activity assessed by the Vybrant and P-glycoprotein-Glo assays. RESULTS: Paclitaxel-resistant cells were cross-resistant to olaparib, doxorubicin and rucaparib but not to veliparib or AZD2461. Resistance correlated with increased ABCB1 expression and was reversible following treatment with the ABCB1 inhibitors verapamil and elacridar. Active efflux of paclitaxel, olaparib, doxorubicin and rucaparib was confirmed in drug-resistant cells and in ABCB1-expressing bacterial membranes. CONCLUSIONS: We describe a common ABCB1-mediated mechanism of paclitaxel and olaparib resistance in ovarian cancer cells. Optimal choice of PARP inhibitor may therefore limit the progression of drug-resistant disease, while routine prescription of first-line paclitaxel may significantly limit subsequent chemotherapy options in ovarian cancer patients
Photoredox Catalysis Using Heterogenized Iridium Complexes
Heterogenized photoredox catalysts provide a path to generating chemicals in an environmentally friendly way, with facile reuse of catalysts in batch or continuous processes. In this study, heterogenized iridium complexes as photoredox catalysts were assembled via covalent attachment to three metal oxide surfaces (ITO, ZrO2, Al2O3) either in the form of thin films or nanopowders and tested as photoredox catalysts for reductive dehalogenation of bromoacetophenone to acetophenone. All catalysts produced acetophenone with high conversions and yields. The fastest reactions were complete in fifteen minutes under mild conditions using Al2O3 surfaces, which provided the most robust and reusable supports. The catalytic performance was compared on both nanopowder and thin film supports, showing that both constructs could be used for photoredox catalysis. The nanopowder-based catalysts resulted in faster and more efficient catalysis, while the thin film-immobilized catalysts were more robust and easily reused. Importantly, the thin film constructs show promise for future photoelectrochemical and electrochemical photoredox setups. Finally, all catalysts could be reused 2-3 times, performing at least 1000 turnovers with Al2O3 supports, highlighting that heterogenized catalysts can perform photoredox catalysis in an environmentally friendly fashion. <br /
Sustainable Ir-Photoredox Catalysis by Means of Heterogenization
A heterogenized iridium catalyst was employed to perform photoredox catalysis for a collection of mechanistically orthogonal reactions using very low quantities of iridium (0.01-0.1 mol %). The heterogenized construct consists of an organometallic iridium coordination complex bonded to an aluminum metal oxide solid-state support via an anchoring group. The solid-state support allows for easy recovery and reusability of the catalyst. Evaluation of the catalytic activity was performed with five different reactions, showing broad applicability and demonstrating the general potential for a heterogenized strategy. Moreover, the heterogenized catalyst was shown to be reusable up to five times and also mediated the reactions with much higher efficiency than the original processes by employing the corresponding homogeneous catalyst. As a result of the low catalyst loadings employed, the feasibility of reusage, and faster reaction times, this catalyst offers a more sustainable option when precious metal catalysts are used in organic synthesis. Finally, the catalyst was successfully applied to a gram-scale reaction, showing it is susceptible to scalability
Understanding the Performance of NiO Photocathodes with Alkyl-Derivatized Cobalt Catalysts and a Push-Pull Dye
Mesoporous NiO photocathodes containing the push-pull dye PB6 and alkyl-derivatized cobaloxime catalysts were prepared using surface amide couplings and analyzed for photocatalytic proton reduction catalysis. The length of the alkyl linker used to derivatize the cobalt catalysts was found to correlate to the photocurrent with the highest photocurrent observed using shorter alkyl linkers but the lowest one for samples without linker. The alkyl linkers were also helpful in slowing dye-NiO charge recombination. Photoelectrochemical measurements and femtosecond transient absorption spectroscopic measurements suggested electron transfer to the surfaceimmobilized catalysts occurred; however, H-2 evolution was not observed. Based on UV-vis, X-ray fluorescence spectroscopy (XRF), and X-ray photoelectron spectroscopy (XPS) measurements, the cobalt catalyst appeared to be limiting the photocathode performance mainly via cobalt demetallation from the oxime ligand. This study highlights the need for a deeper understanding of the effect of catalyst molecular design on photocathode performance
Recommended from our members
Cardiovascular development and survival require Mef2c function in the myocardial but not the endothelial lineage
MEF2C is a member of the highly conserved MEF2 family of transcription factors and is a key regulator of cardiovascular development. In mice, Mef2c is expressed in the developing heart and vasculature, including the endothelium. Loss of Mef2c function in germline knockout mice leads to early embryonic demise and profound developmental abnormalities in the cardiovascular system. Previous attempts to uncover the cause of embryonic lethality by specifically disrupting Mef2c function in the heart or vasculature failed to recapitulate the global Mef2c knockout phenotype and instead resulted in relatively minor defects that did not compromise viability or result in significant cardiovascular defects. However, previous studies examined the requirement of Mef2c in the myocardial and endothelial lineages using Cre lines that begin to be expressed after the expression of Mef2c has already commenced. Here, we tested the requirement of Mef2c in the myocardial and endothelial lineages using conditional knockout approaches in mice with Cre lines that deleted Mef2c prior to onset of its expression in embryonic development. We found that deletion of Mef2c in the early myocardial lineage using Nkx2-5Cre resulted in cardiac and vascular abnormalities that were indistinguishable from the defects in the global Mef2c knockout. In contrast, early deletion of Mef2c in the vascular endothelium using an Etv2::Cre line active prior to the onset of Mef2c expression resulted in viable offspring that were indistinguishable from wild type controls with no overt defects in vascular development, despite nearly complete early deletion of Mef2c in the vascular endothelium. Thus, these studies support the idea that the requirement of MEF2C for vascular development is secondary to its requirement in the heart and suggest that the observed failure in vascular remodeling in Mef2c knockout mice results from defective heart function
Silatrane Anchors for Metal Oxide Surfaces: Optimization for Potential Photocatalytic and Electrocatalytic Applications
Silatrane
surface anchors are protected siloxanes that are known to bond firmly
(from pH 2–11) to metal oxide electrodes under heating. However,
these conditions are not always compatible with the other functionality
present. A silatrane-containing porphyrin molecule and a silatrane-containing
ruthenium complex have now been designed, synthesized and optimized
conditions have been identified for surface binding. Two mild, room-temperature
surface binding methods were explored: binding with or without an
acidic pretreatment; these methods were compared to the traditional,
harsher binding conditions involving strong heating. We find that
a preacidified electrode gave comparable surface loadings at room
temperature compared to sensitization by using the previous strong
heating method. This was also true on TiO<sub>2</sub>, SnO<sub>2</sub>, and <i>nano</i>ITO electrodes and thus may be generalizable.
The new, milder binding methods also resulted in excellent aqueous
and electrochemical stability from pH 2–11. Using a water-insoluble
porphyrin with a silatrane anchor further increased the aqueous stability
of the deposit, aided by the insolubility of the porphyrin. Finally,
X-ray photoelectron spectroscopy (XPS) data confirmed for the first
time that the triethanolamine released from the silatrane on deprotection/binding
in turn binds to TiO<sub>2</sub>, SnO<sub>2</sub>, and <i>nano</i>ITO electrodes. This undesired triethanolamine deposit was easily
removed from the surface by electrochemical voltage cycling or with
an aqueous acidic wash for 1 h
Gold nanoparticle-based supramolecular approach for dye-sensitized H-2-evolving photocathodes
Solar conversion of water into the storable energy carrier H-2 can be achieved through photoelectrochemical water splitting using light adsorbing anodes and cathodes bearing O-2 and H-2 evolving catalysts, respectively. Herein a novel photocathode nanohybrid system is reported. This photocathode consists of a dye-sensitized p-type nickel oxide (NiO) with a perylene-based chromophore (PCA) and a tetra-adamantane modified cobaloxime reduction catalyst (Co) that photo-reduces aqueous protons to H-2. An original supramolecular approach was employed, using beta-cyclodextrin functionalized gold nanoparticles (beta-CD-AuNPs) to link the alkane chain of the PCA dye to the adamantane moieties of the cobaloxime catalyst (Co). This new architecture was investigated by photoelectrochemical measurements and via femtosecond-transient absorption spectroscopy. The results show that irradiation of the complete NiO|PCA|beta-CD-AuNPs|Co electrode leads to ultrafast hole injection into NiO (pi = 3 ps) from the excited dye, followed by rapid reduction of the catalyst, and finally H-2 evolution