25 research outputs found

    A new model for root growth in soil with macropores

    Get PDF
    Abstract: Background and aimsThe use of standard dynamic root architecture models to simulate root growth in soil containing macropores failed to reproduce experimentally observed root growth patterns. We thus developed a new, more mechanistic model approach for the simulation of root growth in structured soil. Methods: In our alternative modelling approach, we distinguish between, firstly, the driving force for root growth, which is determined by the orientation of the previous root segment and the influence of gravitropism and, secondly, soil mechanical resistance to root growth. The latter is expressed by its inverse, soil mechanical conductance, and treated similarly to hydraulic conductivity in Darcy’s law. At the presence of macropores, soil mechanical conductance is anisotropic, which leads to a difference between the direction of the driving force and the direction of the root tip movement. Results: The model was tested using data from the literature, at pot scale, at macropore scale, and in a series of simulations where sensitivity to gravity and macropore orientation was evaluated. Conclusions: Qualitative and quantitative comparisons between simulated and experimentally observed root systems showed good agreement, suggesting that the drawn analogy between soil water flow and root growth is a useful one

    Developmental morphology of cover crop species exhibit contrasting behaviour to changes in soil bulk density, revealed by X-ray computed tomography

    Get PDF
    Plant roots growing through soil typically encounter considerable structural heterogeneity, and local variations in soil dry bulk density. The way the in situ architecture of root systems of different species respond to such heterogeneity is poorly understood due to challenges in visualising roots growing in soil. The objective of this study was to visualise and quantify the impact of abrupt changes in soil bulk density on the roots of three cover crop species with contrasting inherent root morphologies, viz. tillage radish (Raphanus sativus), vetch (Vicia sativa) and black oat (Avena strigosa). The species were grown in soil columns containing a two-layer compaction treatment featuring a 1.2 g cm-3 (uncompacted) zone overlaying a 1.4 g cm-3 (compacted) zone. Three-dimensional visualisations of the root architecture were generated via X-ray computed tomography, and an automated root-segmentation imaging algorithm. Three classes of behaviour were manifest as a result of roots encountering the compacted interface, directly related to the species. For radish, there was switch from a single tap-root to multiple perpendicular roots which penetrated the compacted zone, whilst for vetch primary roots were diverted more horizontally with limited lateral growth at less acute angles. Black oat roots penetrated the compacted zone with no apparent deviation. Smaller root volume, surface area and lateral growth were consistently observed in the compacted zone in comparison to the uncompacted zone across all species. The rapid transition in soil bulk density had a large effect on root morphology that differed greatly between species, with major implications for how these cover crops will modify and interact with soil structure

    Growth of tree roots in hostile soil: a comparison of root growth pressures of tree seedlings with peas

    No full text
    Background and Aims: As part of a study on growth of tree roots in hostile soil, we envisaged that establishment and survival of trees on hard, dry soil may depend on their ability to exert axial root growth pressures of similar magnitude to those of the roots of agricultural plants (with significant root thickening when roots grow across an air gap or cracks and biopores). We selected tree species originating from a range of different soil and climatic conditions to evaluate whether their relative success on harsh soil (in an evolutionary sense) might be related to the magnitude of root growth pressures they could exert, or how they performed in the very early stages of growth after germination. Methods: We measured the maximum axial root growth force (Fmax) on single lateral root axes of 3- to 4- month old seedlings of 6 small-seeded eucalypts from 2 different habitats and 2 contrasting soil types. Root growth rate, root diameter and Fmax were also measured on the primary root axes of a large-seeded acacia and a domesticated annual (Pisum sativum) seedling for up to 10 days following germination. Results: The lateral roots of the 6 eucalypts and the primary roots of the acacia were considerably smaller than the primary roots of P. sativum and they exerted average forces of similar magnitude to one another (0.198 to 0.312 N). The maximum axial root growth pressures were all in the range 150 to 250 kPa but E. leucoxylon, E. loxophleba and A. salicina exerted the greatest pressures among the trees, and comparable pressures to those exerted by the primary roots of 2-day-old P. sativum (211-252 kPa). Although the primary roots of acacia seedlings exerted increasing axial root growth pressures over a 10-day period following germination, the pressures were still only slightly greater than those of the domesticated plant, P. sativum. Conclusions: The lack of any very large differences in axial root growth pressures between trees and domesticated plants suggests that trees that grow well in harsh soil don't do so by exerting higher root growth pressures alone but by also exploring the network of cracks and pores more effectively than do other plants that are less successful

    Crescimento radicular de soja em razão da sucessão de cultivos e da compactação do solo Soybean root growth as affected by previous crop and soil compaction

    No full text
    O objetivo do experimento foi avaliar o crescimento radicular e produção de matéria seca da parte aérea da soja (Glycine max (L.) Merrill) cultivada após diversas espécies vegetais, em solo com diferentes níveis de compactação. O trabalho foi realizado em vasos contendo amostras de um Latossolo Vermelho, textura franco arenosa, com camada de 3,5 cm (profundidade de 15 a 18,5 cm) compactada até as densidades 1,12, 1,36 e 1,60 Mg m-3, onde cultivaram-se anteriormente aveia-preta, guandu, milheto, mucuna-preta, soja, sorgo granífero e tremoço-azul, e um tratamento sem planta (pousio). Essas espécies se desenvolveram por 37 a 39 dias, foram cortadas ao nível do solo, picadas em partes de aproximadamente 3 cm e deixadas sobre a superfície do vaso por 40 dias. Após esse período, cultivou-se a soja até 28 dias após a emergência, quando, então, as plantas foram colhidas. Foram avaliados produção de matéria seca da parte aérea e de raízes, e comprimento e diâmetro radicular da soja. O cultivo anterior com aveia-preta, guandu e milheto favoreceu o crescimento radicular da soja abaixo de camadas compactadas do solo. Independentemente do nível de compactação, o cultivo anterior com qualquer das espécies estudadas beneficiou a produção de matéria seca da parte aérea da soja.<br>This study aimed at evaluating root growth and shoot dry matter production of soybean (Glycine max (L.) Merrill) cropped after different vegetal species, in a soil with different compaction levels. The experiment was conducted in pots containing a Dark-Red Latosol (Acrortox, loamy sand), and the pots had a layer 3.5 cm (15 to 18.5 cm) thick and 15 cm deep compacted to 1.12, 1.36 and 1.60 Mg m-3. Before soybean, the pots were cropped with black oat, pigeon pea, pearl millet, black mucuna, soybean, grain sorghum and lupin, plus a treatment without plants. These species were grown for 37 to 39 days, when they were cut at soil level, prick in particles of approximately 3 cm length, and left on the soil surface for 40 days. After this, soybean was planted in the pots and was allowed to grow for 28 days after plant emergence. The soybean shoot dry matter weight, root length, diameter and dry matter were evaluated. The previous crop with black oat, pigeon pea and pearl millet favored the soybean root growth below compacted layer soil. Regardless soil compaction, the soybean shoot dry matter was favored by the previous crop
    corecore