15 research outputs found

    Modeling what we sample and sampling what we model: challenges for zooplankton model assessment

    Get PDF
    Zooplankton are the intermediate trophic level between phytoplankton and fish, and are an important component of carbon and nutrient cycles, accounting for a large proportion of the energy transfer to pelagic fishes and the deep ocean. Given zooplankton's importance, models need to adequately represent zooplankton dynamics. A major obstacle, though, is the lack of model assessment. Here we try and stimulate the assessment of zooplankton in models by filling three gaps. The first is that many zooplankton observationalists are unfamiliar with the biogeochemical, ecosystem, size-based and individual-based models that have zooplankton functional groups, so we describe their primary uses and how each typically represents zooplankton. The second gap is that many modelers are unaware of the zooplankton data that are available, and are unaccustomed to the different zooplankton sampling systems, so we describe the main sampling platforms and discuss their strengths and weaknesses for model assessment. Filling these gaps in our understanding of models and observations provides the necessary context to address the last gap—a blueprint for model assessment of zooplankton. We detail two ways that zooplankton biomass/abundance observations can be used to assess models: data wrangling that transforms observations to be more similar to model output; and observation models that transform model outputs to be more like observations. We hope that this review will encourage greater assessment of zooplankton in models and ultimately improve the representation of their dynamics

    Biogeochemical protocols and diagnostics for the CMIP6 Ocean Model Intercomparison Project (OMIP)

    Get PDF
    The Ocean Model Intercomparison Project (OMIP) focuses on the physics and biogeochemistry of the ocean component of Earth system models participating in the sixth phase of the Coupled Model Intercomparison Project (CMIP6). OMIP aims to provide standard protocols and diagnostics for ocean models, while offering a forum to promote their common assessment and improvement. It also offers to compare solutions of the same ocean models when forced with reanalysis data (OMIP simulations) vs. when integrated within fully coupled Earth system models (CMIP6). Here we detail simulation protocols and diagnostics for OMIP's biogeochemical and inert chemical tracers. These passive-tracer simulations will be coupled to ocean circulation models, initialized with observational data or output from a model spin-up, and forced by repeating the 1948–2009 surface fluxes of heat, fresh water, and momentum. These so-called OMIP-BGC simulations include three inert chemical tracers (CFC-11, CFC-12, SF6) and biogeochemical tracers (e.g., dissolved inorganic carbon, carbon isotopes, alkalinity, nutrients, and oxygen). Modelers will use their preferred prognostic BGC model but should follow common guidelines for gas exchange and carbonate chemistry. Simulations include both natural and total carbon tracers. The required forced simulation (omip1) will be initialized with gridded observational climatologies. An optional forced simulation (omip1-spunup) will be initialized instead with BGC fields from a long model spin-up, preferably for 2000 years or more, and forced by repeating the same 62-year meteorological forcing. That optional run will also include abiotic tracers of total dissolved inorganic carbon and radiocarbon, CTabio and 14CTabio, to assess deep-ocean ventilation and distinguish the role of physics vs. biology. These simulations will be forced by observed atmospheric histories of the three inert gases and CO2 as well as carbon isotope ratios of CO2. OMIP-BGC simulation protocols are founded on those from previous phases of the Ocean Carbon-Cycle Model Intercomparison Project. They have been merged and updated to reflect improvements concerning gas exchange, carbonate chemistry, and new data for initial conditions and atmospheric gas histories. Code is provided to facilitate their implementation

    Vertical transport in the ocean due to sub-mesoscale structures: Impacts in the Kerguelen region

    No full text
    The summertime phytoplankton bloom near the Kerguelen Plateau is in marked contrast to the low-chlorophyll conditions typical of the Southern Ocean and is thought to arise from natural iron fertilisation. The mechanisms of iron supply to the euphotic zone in this region are poorly understood, and numerical studies of iron transport have until now omitted fine-scale (sub-mesoscale) dynamics which have been shown to significantly increase vertical transport in other parts of the ocean. We present the first sub-mesoscale-resolving study of the flow and vertical transport in this region. The modelled transport and flow structure agree well with observations. We find that an increase in horizontal resolution from mesoscale-resolving (1/20°) to 1/80° resolves sub-mesoscale filamentary frontal structures in which vertical velocities are dramatically higher and are consistent with available observations. Lagrangian tracking shows that water is advected to the surface from much greater depth in the sub-mesoscale-resolving experiment, and that vertical exchange is far more rapid and frequent. This study of sub-mesoscale vertical velocities sets the foundation for subsequent investigation of iron transport in this environment

    Evaluation of OCMIP-2 ocean models' deep circulation with mantle helium-3

    No full text
    We compare simulations of the injection of mantle helium-3 into the deep ocean from six global coarse resolution models which participated in the Ocean Carbon Model Intercomparison Project (OCMIP). We also discuss the results of a study carried out with one of the models, which examines the effect of the subgrid-scale mixing parameterization. These sensitivity tests provide useful information to interpret the differences among the OCMIP models and between model simulations and the data.We find that the OCMIP models, which parameterize subgrid-scale mixing using an eddy-induced velocity, tend to underestimate the ventilation of the deep ocean, based on diagnostics with 3He. In these models, this parameterization is implemented with a constant thickness diffusivity coefficient. In future simulations, we recommend using such a parameterization with spatially and temporally varying coefficients in order to moderate its effect on stratification.The performance of the models with regard to the formation of AABW confirms the conclusion from a previous evaluation with CFC-11. Models coupled with a sea-ice model produce a substantial bottom water formation in the Southern Ocean that tends to overestimate AABW ventilation, while models that are not coupled with a sea-ice model systematically underestimate the formation of AABW.We also analyze specific features of the deep 3He distribution (3He plumes) that are particularly well depicted in the data and which put severe constraints on the deep circulation. We show that all the models fail to reproduce a correct propagation of these plumes in the deep ocean. The resolution of the models may be too coarse to reproduce the strong and narrow currents in the deep ocean, and the models do not incorporate the geothermal heating that may also contribute to the generation of these currents. We also use the context of OCMIP-2 to explore the potential of mantle helium-3 as a tool to compare and evaluate modeled deep-ocean circulations. Although the source function of mantle helium is known with a rather large uncertainty, we find that the parameterization used for the injection of mantle helium-3 is sufficient to generate realistic results, even in the Atlantic Ocean where a previous pioneering study [J. Geophys. Res. 100 (1995) 3829] claimed this parameterization generates inadequate results. These results are supported by a multi-tracer evaluation performed by considering the simulated distributions of both helium-3 and natural 14C, and comparing the simulated tracer fields with available data
    corecore