7 research outputs found

    Upper atmospheres and ionospheres of planets and satellites

    Full text link
    The upper atmospheres of the planets and their satellites are more directly exposed to sunlight and solar wind particles than the surface or the deeper atmospheric layers. At the altitudes where the associated energy is deposited, the atmospheres may become ionized and are referred to as ionospheres. The details of the photon and particle interactions with the upper atmosphere depend strongly on whether the object has anintrinsic magnetic field that may channel the precipitating particles into the atmosphere or drive the atmospheric gas out to space. Important implications of these interactions include atmospheric loss over diverse timescales, photochemistry and the formation of aerosols, which affect the evolution, composition and remote sensing of the planets (satellites). The upper atmosphere connects the planet (satellite) bulk composition to the near-planet (-satellite) environment. Understanding the relevant physics and chemistry provides insight to the past and future conditions of these objects, which is critical for understanding their evolution. This chapter introduces the basic concepts of upper atmospheres and ionospheres in our solar system, and discusses aspects of their neutral and ion composition, wind dynamics and energy budget. This knowledge is key to putting in context the observations of upper atmospheres and haze on exoplanets, and to devise a theory that explains exoplanet demographics.Comment: Invited Revie

    JIRAM, the Jovian Infrared Auroral Mapper

    Get PDF
    JIRAM is an imager/spectrometer on board the Juno spacecraft bound for a polar orbit around Jupiter. JIRAM is composed of IR imager and spectrometer channels. Its scientific goals are to explore the Jovian aurorae and the planet's atmospheric structure, dynamics and composition. This paper explains the characteristics and functionalities of the instrument and reports on the results of ground calibrations. It discusses the main subsystems to the extent needed to understand how the instrument is sequenced and used, the purpose of the calibrations necessary to determine instrument performance, the process for generating the commanding sequences, the main elements of the observational strategy, and the format of the scientific data that JIRAM will produce

    Auroral Processes at the Giant Planets: Energy Deposition, Emission Mechanisms, Morphology and Spectra

    Full text link

    An ultrahot gas-giant exoplanet with a stratosphere

    Get PDF
    International audienceInfrared radiation emitted from a planet contains information about the chemical composition and vertical temperature profile of its atmosphere1,2,3. If upper layers are cooler than lower layers, molecular gases will produce absorption features in the planetary thermal spectrum4,5. Conversely, if there is a stratosphere—where temperature increases with altitude—these molecular features will be observed in emission6,7,8. It has been suggested that stratospheres could form in highly irradiated exoplanets9,10, but the extent to which this occurs is unresolved both theoretically11,12 and observationally3,13,14,15. A previous claim for the presence of a stratosphere14 remains open to question, owing to the challenges posed by the highly variable host star and the low spectral resolution of the measurements3. Here we report a near-infrared thermal spectrum for the ultrahot gas giant WASP-121b, which has an equilibrium temperature of approximately 2,500 kelvin. Water is resolved in emission, providing a detection of an exoplanet stratosphere at 5σ confidence. These observations imply that a substantial fraction of incident stellar radiation is retained at high altitudes in the atmosphere, possibly by absorbing chemical species such as gaseous vanadium oxide and titanium oxide
    corecore