380 research outputs found
Exploring the Use of Fruit Callus Culture as a Model System to Study Color Development and Cell Wall Remodeling during Strawberry Fruit Ripening
Cell cultures derived from strawberry fruit at different developmental stages have been obtained to evaluate their potential use to study different aspects of strawberry ripening. Callus from leaf and cortical tissue of unripe-green, white, and mature-red strawberry fruits were induced in a medium supplemented with 11.3 µM 2,4-dichlorophenoxyacetic acid (2,4-D) under darkness. The transfer of the established callus from darkness to light induced the production of anthocyanin. The replacement of 2,4-D by abscisic acid (ABA) noticeably increased anthocyanin accumulation in green-fruit callus. Cell walls were isolated from the different fruit cell lines and from fruit receptacles at equivalent developmental stages and sequentially fractionated to obtain fractions enriched in soluble pectins, ester bound pectins, xyloglucans (XG), and matrix glycans tightly associated with cellulose microfibrils. These fractions were analyzed by cell wall carbohydrate microarrays. In fruit receptacle samples, pectins were abundant in all fractions, including those enriched in matrix glycans. The amount of pectin increased from green to white stage, and later these carbohydrates were solubilized in red fruit. Apparently, XG content was similar in white and red fruit, but the proportion of galactosylated XG increased in red fruit. Cell wall fractions from callus cultures were enriched in extensin and displayed a minor amount of pectins. Stronger signals of extensin Abs were detected in sodium carbonate fraction, suggesting that these proteins could be linked to pectins. Overall, the results obtained suggest that fruit cell lines could be used to analyze hormonal regulation of color development in strawberry but that the cell wall remodeling process associated with fruit softening might be masked by the high presence of extensin in callus cultures
Performance of Polymerase Chain Reaction Techniques Detecting Perforin in the Diagnosis of Acute Renal Rejection: A Meta-Analysis
BACKGROUND: Studies in the past have shown that perforin expression is up-regulated during acute renal rejection, which provided hopes for a non-invasive and reliable diagnostic method to identify acute rejection. However, a systematic assessment of the value of perforin as a diagnostic marker of acute renal rejection has not been performed. We conducted this meta-analysis to document the diagnostic performance of perforin mRNA detection and to identify potential variables that may affect the performance. METHODOLOGY/PRINCIPAL FINDINGS: Relevant materials that reported the diagnostic performance of perforin mRNA detection in acute renal rejection patients were extracted from electronic databases. After careful evaluation of the studies included in this analysis, the numbers of true positive, true negative, false positive and false negative cases of acute renal rejection identified by perforin mRNA detection were gathered from each data set. The publication year, sample origin, mRNA quantification method and housekeeping gene were also extracted as potential confounding variables. Fourteen studies with a total of 501 renal transplant subjects were included in this meta-analysis. The overall performance of perforin mRNA detection was: pooled sensitivity, 0.83 (95% confidence interval: 0.78 to 0.88); pooled specificity, 0.86 (95% confidence interval: 0.82 to 0.90); diagnostic odds ratio, 28.79 (95% confidence interval: 16.26 to 50.97); and area under the summary receiver operating characteristic curves value, 0.9107±0.0174. The univariate analysis of potential variables showed some changes in the diagnostic performance, but none of the differences reached statistical significance. CONCLUSIONS/SIGNIFICANCE: Despite inter-study variability, the test performance of perforin mRNA detected by polymerase chain reaction was consistent under circumstances of methodological changes and demonstrated both sensitivity and specificity in detecting acute renal rejection. These results suggest a great diagnostic potential for perforin mRNA detection as a reliable marker of acute rejection in renal allograft recipients
Death with functioning kidney transplant: an obituarial analysis
Death with a functioning kidney graft (DWFG) is now a major cause of graft loss after renal transplantation, occurring in up to 40% of cases. Its occurrence provides insight into the medical care of subjects with a functioning kidney transplant. In this study, we used the time to DWFG as an endpoint, to test whether improved medical care has contributed to better kidney transplant outcomes.
We used single-center data from the Milwaukee Regional Medical Center and Froedtert Hospital, on kidney-only transplants from 1969 through 2005. A total of 3,157 kidney transplants were done at our center during this time. There were 714 deaths with functioning kidney. We also recorded the major causes of DWFG over the time period from 1969 through 2005 divided into 3 epochs. The data were analyzed as a serial collection of yearly obituaries.
The time to DWFG has increased to 10 years despite a 20-year increase in the mean age of transplant recipients over the same time period.
Better pre-transplant evaluation, improved treatments for hypertension and hyperlipidemia, improved management of acute myocardial infarction, superior immunosuppressive protocols and better prophylaxis and treatment of infectious diseases have all likely contributed to this trend
Lattice Boltzmann simulations of soft matter systems
This article concerns numerical simulations of the dynamics of particles
immersed in a continuum solvent. As prototypical systems, we consider colloidal
dispersions of spherical particles and solutions of uncharged polymers. After a
brief explanation of the concept of hydrodynamic interactions, we give a
general overview over the various simulation methods that have been developed
to cope with the resulting computational problems. We then focus on the
approach we have developed, which couples a system of particles to a lattice
Boltzmann model representing the solvent degrees of freedom. The standard D3Q19
lattice Boltzmann model is derived and explained in depth, followed by a
detailed discussion of complementary methods for the coupling of solvent and
solute. Colloidal dispersions are best described in terms of extended particles
with appropriate boundary conditions at the surfaces, while particles with
internal degrees of freedom are easier to simulate as an arrangement of mass
points with frictional coupling to the solvent. In both cases, particular care
has been taken to simulate thermal fluctuations in a consistent way. The
usefulness of this methodology is illustrated by studies from our own research,
where the dynamics of colloidal and polymeric systems has been investigated in
both equilibrium and nonequilibrium situations.Comment: Review article, submitted to Advances in Polymer Science. 16 figures,
76 page
Single-Image Depth Prediction Makes Feature Matching Easier
Good local features improve the robustness of many 3D re-localization and
multi-view reconstruction pipelines. The problem is that viewing angle and
distance severely impact the recognizability of a local feature. Attempts to
improve appearance invariance by choosing better local feature points or by
leveraging outside information, have come with pre-requisites that made some of
them impractical. In this paper, we propose a surprisingly effective
enhancement to local feature extraction, which improves matching. We show that
CNN-based depths inferred from single RGB images are quite helpful, despite
their flaws. They allow us to pre-warp images and rectify perspective
distortions, to significantly enhance SIFT and BRISK features, enabling more
good matches, even when cameras are looking at the same scene but in opposite
directions.Comment: 14 pages, 7 figures, accepted for publication at the European
conference on computer vision (ECCV) 202
The impact of donor policies in Europe: a steady increase, but not everywhere
<p>Abstract</p> <p>Background</p> <p>Transplantable organs are scarce everywhere. Therefore, countries have developed policies to support the efficient use of potential donors. Nevertheless, the shortage of organs remains. Were these policies in vain? The aim of this study is to assess the impact of donor policies on donor procurement in 10 Western European countries from 1995 to 2005.</p> <p>Method</p> <p>To assess the impact of the donor policies we studied the conversion of potential donors into effectuated donors. 80% of the donors died from CVAs or a (traffic) accident. We considered these mortality rates to be a good proxy for potential donors. Here we call the conversion of potential donors into actual donors 'the donor efficiency rate by proxy'.</p> <p>Results</p> <p>The mortality rates for CVA and (traffic) accidents have decreased in the countries under study. At the same time, in most countries the donor efficiency rates have steadily increased. The variance in donor efficiency rates between countries has also increased from 1995 to 2005. Four countries introduced a new consent system or changed their existing system, without (visible) long-term effects.</p> <p>Conclusion</p> <p>The overall increase in donor efficiency means that the efforts to improve donor policies have paid off. However, substantial differences between countries were found. The success of donor policies in terms of the number of absolute donors is blurred by the success of policies on traffic safety and CVA treatment. It remains unclear which specific policy measures are responsible for the increase in donor efficiency rates. This increase is not related to having a presumed consent system. Furthermore, an analysis of countries that introduced a new consent system or changed their system showed no effect on donor efficiency.</p
LPA Is a Chemorepellent for B16 Melanoma Cells: Action through the cAMP-Elevating LPA5 Receptor
Lysophosphatidic acid (LPA), a lipid mediator enriched in serum, stimulates cell migration, proliferation and other functions in many cell types. LPA acts on six known G protein-coupled receptors, termed LPA1–6, showing both overlapping and distinct signaling properties. Here we show that, unexpectedly, LPA and serum almost completely inhibit the transwell migration of B16 melanoma cells, with alkyl-LPA(18∶1) being 10-fold more potent than acyl-LPA(18∶1). The anti-migratory response to LPA is highly polarized and dependent on protein kinase A (PKA) but not Rho kinase activity; it is associated with a rapid increase in intracellular cAMP levels and PIP3 depletion from the plasma membrane. B16 cells express LPA2, LPA5 and LPA6 receptors. We show that LPA-induced chemorepulsion is mediated specifically by the alkyl-LPA-preferring LPA5 receptor (GPR92), which raises intracellular cAMP via a noncanonical pathway. Our results define LPA5 as an anti-migratory receptor and they implicate the cAMP-PKA pathway, along with reduced PIP3 signaling, as an effector of chemorepulsion in B16 melanoma cells
Non-Invasive Imaging of Acute Renal Allograft Rejection in Rats Using Small Animal 18F-FDG-PET
BACKGROUND: At present, renal grafts are the most common solid organ transplants world-wide. Given the importance of renal transplantation and the limitation of available donor kidneys, detailed analysis of factors that affect transplant survival are important. Despite the introduction of new and effective immunosuppressive drugs, acute cellular graft rejection (AR) is still a major risk for graft survival. Nowadays, AR can only be definitively by renal biopsy. However, biopsies carry a risk of renal transplant injury and loss. Most important, they can not be performed in patients taking anticoagulant drugs. METHODOLOGY/PRINCIPAL FINDINGS: We present a non-invasive, entirely image-based method to assess AR in an allogeneic rat renal transplantation model using small animal positron emission tomography (PET) and (18)F-fluorodeoxyglucose (FDG). 3 h after i.v. injection of 30 MBq FDG into adult uni-nephrectomized, allogeneically transplanted rats, tissue radioactivity of renal parenchyma was assessed in vivo by a small animal PET-scanner (post operative day (POD) 1,2,4, and 7) and post mortem dissection. The mean radioactivity (cps/mm(3) tissue) as well as the percent injected dose (%ID) was compared between graft and native reference kidney. Results were confirmed by histological and autoradiographic analysis. Healthy rats, rats with acute CSA nephrotoxicity, with acute tubular necrosis, and syngeneically transplanted rats served as controls. FDG-uptake was significantly elevated only in allogeneic grafts from POD 1 on when compared to the native kidney (%ID graft POD 1: 0.54+/-0.06; POD 2: 0.58+/-0.12; POD 4: 0.81+/-0.06; POD 7: 0.77+/-0.1; CTR: 0.22+/-0.01, n = 3-28). Renal FDG-uptake in vivo correlated with the results obtained by micro-autoradiography and the degree of inflammatory infiltrates observed in histology. CONCLUSIONS/SIGNIFICANCE: We propose that graft FDG-PET imaging is a new option to non-invasively, specifically, early detect, and follow-up acute renal rejection. This method is potentially useful to improve post-transplant rejection monitoring
- …