58 research outputs found

    Homecare physiotherapy in the iberian peninsula public health system

    Get PDF
    Objetivos - Conocer los principales servicios de fisioterapia domiciliaria que oferta el Sistema Sanitario Público para las personas mayores dependientes de la Península Ibérica (España y Portugal). Estrategia de búsqueda - Revisión bibliográfica actualizada y exhaustiva sobre los estudios previos; estancia de investigación en Hospitales, Centros de Salud y organismos financiados por la Administración Pública en ambos países; entrevistas en profundidad a informantes estratégicos. Síntesis de los resultados - Se describe la situación de la fisioterapia domiciliaria en España, desde el año 1987 hasta agosto de 2008. Se detecta que en Portugal la fisioterapia domiciliaria está recogida en la cartera de servicios de atención primaria (Decreto-Ley no 28/2008, del 22 de febrero). Conclusiones - Existen pocas investigaciones a nivel de la Península que ofrezcan datos objetivos basados en la evidencia científica sobre la efectividad de estos servicios de fisioterapia, la satisfacción del usuario y las repercusiones que producen con respecto a otros tratamientos; sin embargo, estos estudios son necesarios para la evaluación de las políticas sanitarias, la distribución adecuada de recursos, la revisión de los programas, la metodología de actuación, etc.ABSTRACT - Objectives: To become acquainted with the principal homecare physiotherapy services that are offered by the Public Health System for dependent elderly patients in the Iberian Peninsula (Spain and Portugal). Methods: A thorough and updated review of the literature regarding previous studies, research stays in Hospitals, Primary Health Care Centers and Public Health institutions in both countries financed by the Public Health Administration; in-depth interviews with specific informants. Results: The situation of homecare physiotherapy in Spain from the year 1987 to the August 2008 is described. In Portugal, these services are established within the services regulated by Primary Health Care (Decree-Law no. 28/2008, of February 22). Conclusions: There are few studies in the Iberian Peninsula that offer scientific evidence-based information on the effectiveness of these physiotherapy services, user satisfaction and the effect they have in relation to other treatments. However, these studies are needed in order to evaluate the current health legislation, appropriate distribution of resources, to review the clinical programs, clinical action methodologies, etc.info:eu-repo/semantics/publishedVersio

    High Endemicity of Soil-Transmitted Helminths in a Population Frequently Exposed to Albendazole but No Evidence of Antiparasitic Resistance

    Get PDF
    Soil-transmitted helminths (STHs) are gastrointestinal parasites widely distributed in tropical and subtropical areas. Mass drug administration (MDA) of benzimidazoles (BZ) is the most recommended for STH control. These drugs have demonstrated limited efficacy against Trichuris trichiura and the long-term use of single-dose BZ has raised concerns of the possible emergence of genetic resistance. The objective of this investigation was to determine whether genetic mutations associated with BZ resistance were present in STH species circulating in an endemic region of Honduras. Methods: A parasitological survey was performed as part of this study, the Kato–Katz technique was used to determine STH prevalence in children of La Hicaca, Honduras. A subgroup of children received anthelminthic treatment in order to recover adult parasite specimens that were analyzed through molecular biology techniques. Genetic regions containing codons 200, 198, and 167 of the β-tubulin gene of Ascaris lumbricoides and Trichuris trichiura were amplified and sequenced. Results: Stool samples were collected from 106 children. The overall STH prevalence was 75.47%, whereby T. trichiura was the most prevalent helminth (56.6%), followed by A. lumbricoides (17%), and hookworms (1.9%). Eighty-five sequences were generated for adjacent regions to codons 167, 198, and 200 of the β-tubulin gene of T. trichiura and A. lumbricoides specimens. The three codons of interest were found to be monomorphic in all the specimens. Conclusion: Although the inability to find single-nucleotide polymorphisms (SNPs) in the small sample analyzed for the present report does not exclude the possibility of their occurrence, these results suggest that, at present, Honduras’s challenges in STH control may not be related to drug resistance but to environmental conditions and/or host factors permitting reinfections.Brock University Library Open Access Publishing Fun

    An Operational Framework for Urban Vulnerability to Floods in the Guayas Estuary Region: The Duran Case Study

    Get PDF
    Duran is a coastal city located in the Guayas Estuary region in which 24% of urban sectors suffers from the effects of chronic flooding. This study seeks to assess the causes of Duran’s vulnerability by considering exposure, population sensitivity and adaptive capacity to establish alternatives to reduce its vulnerability to flooding. An operational framework is proposed based on the vulnerability definition of the Intergovernmental Panel on Climate Change (IPCC) and applying a census-based Index of Vulnerability, a geographic information system and local knowledge of urban development. A Principal Component and equal weighting analysis were applied as well as a spatial clustering to explore the spatial vulnerability across the city. A total of 34% of the city area is mapped as having high and very high vulnerability, mostly occupied by informal settlements (e.g., 288 hectares). Underlying factors were poor quality housing, lack of city services and low adaptive capacity of the community. However, some government housing programs (e.g., El Recreo), with better housing and adaptive capacity were also highly vulnerable. Limited urban planning governance has led to the overloading of storm water and drainage infrastructure which cause chronic flooding. Understanding the underlying causes of vulnerability is critical in order develop integrated strategies that increase city resilience to climate change

    Function of glutathione peroxidases in legume root nodules

    Get PDF
    © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.[EN] Glutathione peroxidases (Gpxs) are antioxidant enzymes not studied so far in legume nodules, despite the fact that reactive oxygen species are produced at different steps of the symbiosis. The function of two Gpxs that are highly expressed in nodules of the model legume Lotus japonicus was examined. Gene expression analysis, enzymatic and nitrosylation assays, yeast cell complementation, in situ mRNA hybridization, immunoelectron microscopy, and LjGpx-green fluorescent protein (GFP) fusions were used to characterize the enzymes and to localize each transcript and isoform in nodules. The LjGpx1 and LjGpx3 genes encode thioredoxin-dependent phospholipid hydroperoxidases and are differentially regulated in response to nitric oxide (NO) and hormones. LjGpx1 and LjGpx3 are nitrosylated in vitro or in plants treated with S-nitrosoglutathione (GSNO). Consistent with the modification of the peroxidatic cysteine of LjGpx3, in vitro assays demonstrated that this modification results in enzyme inhibition. The enzymes are highly expressed in the infected zone, but the LjGpx3 mRNA is also detected in the cortex and vascular bundles. LjGpx1 is localized to the plastids and nuclei, and LjGpx3 to the cytosol and endoplasmic reticulum. Based on yeast complementation experiments, both enzymes protect against oxidative stress, salt stress, and membrane damage. It is concluded that both LjGpxs perform major antioxidative functions in nodules, preventing lipid peroxidation and other oxidative processes at different subcellular sites of vascular and infected cells. The enzymes are probably involved in hormone and NO signalling, and may be regulated through nitrosylation of the peroxidatic cysteine essential for catalytic function.AS and PBS were the recipients of predoctoral (Formacion de Personal Investigador) and postdoctoral (Marie Curie) contracts, respectively. We thank Martin Crespi for help with in situ RNA hybridization and Simon Avery for sharing the yeast mutant and for helpful advice. This work was supported by Ministerio de Economia y Competitividad-Fondo Europeo de Desarrollo Regional (AGL2011-24524 and AGL2014-53717-R). The UMR1136 is supported by a grant overseen by the French National Research Agency (ANR) as part of the 'Investissements d'Avenir' programme (ANR-11-LABX-0002-01, Lab of Excellence ARBRE). MM and KJD acknowledge support within SPP1710. The proteomic analysis was performed in the CSIC/UAB Proteomics Facility of IIBB-CSIC that belongs to ProteoRed, PRB2-ISCIII, supported by grant PT13/0001.Matamoros, MA.; Saiz Andres, A.; Peñuelas, M.; Bustos-Sanmamed, P.; Mulet Salort, JM.; Barja, MV.; Rouhier, N.... (2015). Function of glutathione peroxidases in legume root nodules. Journal of Experimental Botany. 66(10):2979-2990. https://doi.org/10.1093/jxb/erv066S297929906610Astier, J., Kulik, A., Koen, E., Besson-Bard, A., Bourque, S., Jeandroz, S., … Wendehenne, D. (2012). Protein S-nitrosylation: What’s going on in plants? Free Radical Biology and Medicine, 53(5), 1101-1110. doi:10.1016/j.freeradbiomed.2012.06.032Avery, A. M., & Avery, S. V. (2001). Saccharomyces cerevisiaeExpresses Three Phospholipid Hydroperoxide Glutathione Peroxidases. Journal of Biological Chemistry, 276(36), 33730-33735. doi:10.1074/jbc.m105672200Avsian-Kretchmer, O., Gueta-Dahan, Y., Lev-Yadun, S., Gollop, R., & Ben-Hayyim, G. (2004). The Salt-Stress Signal Transduction Pathway That Activates the gpx1 Promoter Is Mediated by Intracellular H2O2, Different from the Pathway Induced by Extracellular H2O2. Plant Physiology, 135(3), 1685-1696. doi:10.1104/pp.104.041921Balmer, Y., Koller, A., del Val, G., Manieri, W., Schurmann, P., & Buchanan, B. B. (2002). Proteomics gives insight into the regulatory function of chloroplast thioredoxins. Proceedings of the National Academy of Sciences, 100(1), 370-375. doi:10.1073/pnas.232703799Becana, M., Matamoros, M. A., Udvardi, M., & Dalton, D. A. (2010). Recent insights into antioxidant defenses of legume root nodules. New Phytologist, 188(4), 960-976. doi:10.1111/j.1469-8137.2010.03512.xBrigelius-Flohé, R., & Maiorino, M. (2013). Glutathione peroxidases. Biochimica et Biophysica Acta (BBA) - General Subjects, 1830(5), 3289-3303. doi:10.1016/j.bbagen.2012.11.020Bright, J., Desikan, R., Hancock, J. T., Weir, I. S., & Neill, S. J. (2005). ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2 O2 synthesis. The Plant Journal, 45(1), 113-122. doi:10.1111/j.1365-313x.2005.02615.xBroughton, W. J., & Dilworth, M. J. (1971). Control of leghaemoglobin synthesis in snake beans. Biochemical Journal, 125(4), 1075-1080. doi:10.1042/bj1251075Camerini, S., Polci, M. L., Restuccia, U., Usuelli, V., Malgaroli, A., & Bachi, A. (2007). A Novel Approach to Identify Proteins Modified by Nitric Oxide:  the HIS-TAG Switch Method. Journal of Proteome Research, 6(8), 3224-3231. doi:10.1021/pr0701456Chang, C. C. C., Ślesak, I., Jordá, L., Sotnikov, A., Melzer, M., Miszalski, Z., … Karpiński, S. (2009). Arabidopsis Chloroplastic Glutathione Peroxidases Play a Role in Cross Talk between Photooxidative Stress and Immune Responses. Plant Physiology, 150(2), 670-683. doi:10.1104/pp.109.135566Colebatch, G., Kloska, S., Trevaskis, B., Freund, S., Altmann, T., & Udvardi, M. K. (2002). Novel Aspects of Symbiotic Nitrogen Fixation Uncovered by Transcript Profiling with cDNA Arrays. Molecular Plant-Microbe Interactions, 15(5), 411-420. doi:10.1094/mpmi.2002.15.5.411Dalton, D. A. (1995). Antioxidant Defenses of Plants and Fungi. Oxidative Stress and Antioxidant Defenses in Biology, 298-355. doi:10.1007/978-1-4615-9689-9_9FOYER, C. H., & NOCTOR, G. (2005). Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant, Cell and Environment, 28(8), 1056-1071. doi:10.1111/j.1365-3040.2005.01327.xFu, L.-H., Wang, X.-F., Eyal, Y., She, Y.-M., Donald, L. J., Standing, K. G., & Ben-Hayyim, G. (2002). A Selenoprotein in the Plant Kingdom. Journal of Biological Chemistry, 277(29), 25983-25991. doi:10.1074/jbc.m202912200Gaber, A., Ogata, T., Maruta, T., Yoshimura, K., Tamoi, M., & Shigeoka, S. (2012). The Involvement of Arabidopsis Glutathione Peroxidase 8 in the Suppression of Oxidative Damage in the Nucleus and Cytosol. Plant and Cell Physiology, 53(9), 1596-1606. doi:10.1093/pcp/pcs100Daniel Gietz, R., & Woods, R. A. (2002). Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods in Enzymology, 87-96. doi:10.1016/s0076-6879(02)50957-5Gueta-Dahan, Y., Yaniv, Z., Zilinskas, B. A., & Ben-Hayyim, G. (1997). Salt and oxidative stress: similar and specific responses and their relation to salt tolerance in Citrus. Planta, 203(4), 460-469. doi:10.1007/s004250050215Herbette, S., Lenne, C., Leblanc, N., Julien, J.-L., Drevet, J. R., & Roeckel-Drevet, P. (2002). Two GPX-like proteins fromLycopersicon esculentumandHelianthus annuusare antioxidant enzymes with phospholipid hydroperoxide glutathione peroxidase and thioredoxin peroxidase activities. European Journal of Biochemistry, 269(9), 2414-2420. doi:10.1046/j.1432-1033.2002.02905.xHerbette, S., Roeckel-Drevet, P., & Drevet, J. R. (2007). Seleno-independent glutathione peroxidases. FEBS Journal, 274(9), 2163-2180. doi:10.1111/j.1742-4658.2007.05774.xJaffrey, S. R., Erdjument-Bromage, H., Ferris, C. D., Tempst, P., & Snyder, S. H. (2001). Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nature Cell Biology, 3(2), 193-197. doi:10.1038/35055104Jung, B. G., Lee, K. O., Lee, S. S., Chi, Y. H., Jang, H. H., Kang, S. S., … Lee, S. Y. (2002). A Chinese Cabbage cDNA with High Sequence Identity to Phospholipid Hydroperoxide Glutathione Peroxidases Encodes a Novel Isoform of Thioredoxin-dependent Peroxidase. Journal of Biological Chemistry, 277(15), 12572-12578. doi:10.1074/jbc.m110791200Koh, C. S., Didierjean, C., Navrot, N., Panjikar, S., Mulliert, G., Rouhier, N., … Corbier, C. (2007). Crystal Structures of a Poplar Thioredoxin Peroxidase that Exhibits the Structure of Glutathione Peroxidases: Insights into Redox-driven Conformational Changes. Journal of Molecular Biology, 370(3), 512-529. doi:10.1016/j.jmb.2007.04.031Kuranda, K., Leberre, V., Sokol, S., Palamarczyk, G., & Francois, J. (2006). Investigating the caffeine effects in the yeast Saccharomyces cerevisiae brings new insights into the connection between TOR, PKC and Ras/cAMP signalling pathways. Molecular Microbiology, 61(5), 1147-1166. doi:10.1111/j.1365-2958.2006.05300.xLivak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25(4), 402-408. doi:10.1006/meth.2001.1262Maiorino, M., Gregolin, C., & Ursini, F. (1990). [47] Phospholipid hydroperoxide glutathione peroxidase. Methods in Enzymology, 448-457. doi:10.1016/0076-6879(90)86139-mMargis, R., Dunand, C., Teixeira, F. K., & Margis-Pinheiro, M. (2008). Glutathione peroxidase family - an evolutionary overview. FEBS Journal, 275(15), 3959-3970. doi:10.1111/j.1742-4658.2008.06542.xMiao, Y., Lv, D., Wang, P., Wang, X.-C., Chen, J., Miao, C., & Song, C.-P. (2006). An Arabidopsis Glutathione Peroxidase Functions as Both a Redox Transducer and a Scavenger in Abscisic Acid and Drought Stress Responses. The Plant Cell, 18(10), 2749-2766. doi:10.1105/tpc.106.044230Mullineaux, P. M., Karpinski, S., Jimenez, A., Cleary, S. P., Robinson, C., & Creissen, G. P. (1998). Identification of cDNAS encoding plastid-targeted glutathione peroxidase. The Plant Journal, 13(3), 375-379. doi:10.1046/j.1365-313x.1998.00052.xNakagawa, T., Kurose, T., Hino, T., Tanaka, K., Kawamukai, M., Niwa, Y., … Kimura, T. (2007). Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. Journal of Bioscience and Bioengineering, 104(1), 34-41. doi:10.1263/jbb.104.34Navrot, N., Collin, V., Gualberto, J., Gelhaye, E., Hirasawa, M., Rey, P., … Rouhier, N. (2006). Plant Glutathione Peroxidases Are Functional Peroxiredoxins Distributed in Several Subcellular Compartments and Regulated during Biotic and Abiotic Stresses. Plant Physiology, 142(4), 1364-1379. doi:10.1104/pp.106.089458Passaia, G., Queval, G., Bai, J., Margis-Pinheiro, M., & Foyer, C. H. (2014). The effects of redox controls mediated by glutathione peroxidases on root architecture in Arabidopsis thaliana. Journal of Experimental Botany, 65(5), 1403-1413. doi:10.1093/jxb/ert486Perazzolli, M., Dominici, P., Romero-Puertas, M. C., Zago, E., Zeier, J., Sonoda, M., … Delledonne, M. (2004). Arabidopsis Nonsymbiotic Hemoglobin AHb1 Modulates Nitric Oxide Bioactivity. The Plant Cell, 16(10), 2785-2794. doi:10.1105/tpc.104.025379Puppo, A., Herrada, G., & Rigaud, J. (1991). Lipid Peroxidation in Peribacteroid Membranes from French-Bean Nodules. Plant Physiology, 96(3), 826-830. doi:10.1104/pp.96.3.826Puppo, A., Pauly, N., Boscari, A., Mandon, K., & Brouquisse, R. (2013). Hydrogen Peroxide and Nitric Oxide: Key Regulators of the Legume—Rhizobium and Mycorrhizal Symbioses. Antioxidants & Redox Signaling, 18(16), 2202-2219. doi:10.1089/ars.2012.5136Ramos, J., Matamoros, M. A., Naya, L., James, E. K., Rouhier, N., Sato, S., … Becana, M. (2008). The glutathione peroxidase gene family of Lotus japonicus : characterization of genomic clones, expression analyses and immunolocalization in legumes. New Phytologist, 181(1), 103-114. doi:10.1111/j.1469-8137.2008.02629.xMilla, M. A. R., Maurer, A., Huete, A. R., & Gustafson, J. P. (2003). Glutathione peroxidase genes in Arabidopsis are ubiquitous and regulated by abiotic stresses through diverse signaling pathways. The Plant Journal, 36(5), 602-615. doi:10.1046/j.1365-313x.2003.01901.xROMERO-PUERTAS, M. C., RODRIGUEZ-SERRANO, M., CORPAS, F. J., GOMEZ, M., DEL RIO, L. A., & SANDALIO, L. M. (2004). Cadmium-induced subcellular accumulation of O2.- and H2O2 in pea leaves. Plant, Cell and Environment, 27(9), 1122-1134. doi:10.1111/j.1365-3040.2004.01217.xRubio, M. C., Becana, M., Kanematsu, S., Ushimaru, T., & James, E. K. (2009). Immunolocalization of antioxidant enzymes in high-pressure frozen root and stem nodules of Sesbania rostrata. New Phytologist, 183(2), 395-407. doi:10.1111/j.1469-8137.2009.02866.xSainz, M., Pérez-Rontomé, C., Ramos, J., Mulet, J. M., James, E. K., Bhattacharjee, U., … Becana, M. (2013). Plant hemoglobins may be maintained in functional form by reduced flavins in the nuclei, and confer differential tolerance to nitro-oxidative stress. The Plant Journal, 76(5), 875-887. doi:10.1111/tpj.12340Seidel, T., Kluge, C., Hanitzsch, M., Roß, J., Sauer, M., Dietz, K.-J., & Golldack, D. (2004). Colocalization and FRET-analysis of subunits c and a of the vacuolar H+-ATPase in living plant cells. Journal of Biotechnology, 112(1-2), 165-175. doi:10.1016/j.jbiotec.2004.04.027Serrano, R., Mulet, J. M., Rios, G., Marquez, J. A., Larrinoa, I. igo F. de, Leube, M. P., … Montesinos, C. (1999). A glimpse of the mechanisms of ion homeostasis during salt stress. Journal of Experimental Botany, 50(Special_Issue), 1023-1036. doi:10.1093/jxb/50.special_issue.1023Tovar-Méndez, A., Matamoros, M. A., Bustos-Sanmamed, P., Dietz, K.-J., Cejudo, F. J., Rouhier, N., … Becana, M. (2011). Peroxiredoxins and NADPH-Dependent Thioredoxin Systems in the Model Legume Lotus japonicus. Plant Physiology, 156(3), 1535-1547. doi:10.1104/pp.111.177196Wolff, S. P. (1994). [18] Ferrous ion oxidation in presence of ferric ion indicator xylenol orange for measurement of hydroperoxides. Oxygen Radicals in Biological Systems Part C, 182-189. doi:10.1016/s0076-6879(94)33021-

    International Liver Transplantation Society Global Census:First Look at Pediatric Liver Transplantation Activity Around the World

    Get PDF
    Background. Over 16 000 children under the age of 15 died worldwide in 2017 because of liver disease. Pediatric liver transplantation (PLT) is currently the standard of care for these patients. The aim of this study is to describe global PLT activity and identify variations between regions. Methods. A survey was conducted from May 2018 to August 2019 to determine the current state of PLT. Transplant centers were categorized into quintile categories according to the year they performed their first PLT. Countries were classified according to gross national income per capita. Results. One hundred eight programs from 38 countries were included (68% response rate). 10 619 PLTs were performed within the last 5 y. High-income countries performed 4992 (46.4%) PLT, followed by upper-middle- (4704 [44·3%]) and lower-middle (993 [9·4%])-income countries. The most frequently used type of grafts worldwide are living donor grafts. A higher proportion of lower-middle-income countries (68·7%) performed ≥25 living donor liver transplants over the last 5 y compared to high-income countries (36%; P = 0.019). A greater proportion of programs from high-income countries have performed ≥25 whole liver transplants (52.4% versus 6.2%; P = 0.001) and ≥25 split/reduced liver transplants (53.2% versus 6.2%; P &lt; 0.001) compared to lower-middle-income countries. Conclusions. This study represents, to our knowledge, the most geographically comprehensive report on PLT activity and a first step toward global collaboration and data sharing for the greater good of children with liver disease; it is imperative that these centers share the lead in PLT.</p

    American Gut: an Open Platform for Citizen Science Microbiome Research

    Get PDF
    McDonald D, Hyde E, Debelius JW, et al. American Gut: an Open Platform for Citizen Science Microbiome Research. mSystems. 2018;3(3):e00031-18

    RICORS2040 : The need for collaborative research in chronic kidney disease

    Get PDF
    Chronic kidney disease (CKD) is a silent and poorly known killer. The current concept of CKD is relatively young and uptake by the public, physicians and health authorities is not widespread. Physicians still confuse CKD with chronic kidney insufficiency or failure. For the wider public and health authorities, CKD evokes kidney replacement therapy (KRT). In Spain, the prevalence of KRT is 0.13%. Thus health authorities may consider CKD a non-issue: very few persons eventually need KRT and, for those in whom kidneys fail, the problem is 'solved' by dialysis or kidney transplantation. However, KRT is the tip of the iceberg in the burden of CKD. The main burden of CKD is accelerated ageing and premature death. The cut-off points for kidney function and kidney damage indexes that define CKD also mark an increased risk for all-cause premature death. CKD is the most prevalent risk factor for lethal coronavirus disease 2019 (COVID-19) and the factor that most increases the risk of death in COVID-19, after old age. Men and women undergoing KRT still have an annual mortality that is 10- to 100-fold higher than similar-age peers, and life expectancy is shortened by ~40 years for young persons on dialysis and by 15 years for young persons with a functioning kidney graft. CKD is expected to become the fifth greatest global cause of death by 2040 and the second greatest cause of death in Spain before the end of the century, a time when one in four Spaniards will have CKD. However, by 2022, CKD will become the only top-15 global predicted cause of death that is not supported by a dedicated well-funded Centres for Biomedical Research (CIBER) network structure in Spain. Realizing the underestimation of the CKD burden of disease by health authorities, the Decade of the Kidney initiative for 2020-2030 was launched by the American Association of Kidney Patients and the European Kidney Health Alliance. Leading Spanish kidney researchers grouped in the kidney collaborative research network Red de Investigación Renal have now applied for the Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS) call for collaborative research in Spain with the support of the Spanish Society of Nephrology, Federación Nacional de Asociaciones para la Lucha Contra las Enfermedades del Riñón and ONT: RICORS2040 aims to prevent the dire predictions for the global 2040 burden of CKD from becoming true
    corecore