140 research outputs found
Distributed Energy Trading: The Multiple-Microgrid Case
In this paper, a distributed convex optimization framework is developed for
energy trading between islanded microgrids. More specifically, the problem
consists of several islanded microgrids that exchange energy flows by means of
an arbitrary topology. Due to scalability issues and in order to safeguard
local information on cost functions, a subgradient-based cost minimization
algorithm is proposed that converges to the optimal solution in a practical
number of iterations and with a limited communication overhead. Furthermore,
this approach allows for a very intuitive economics interpretation that
explains the algorithm iterations in terms of "supply--demand model" and
"market clearing". Numerical results are given in terms of convergence rate of
the algorithm and attained costs for different network topologies.Comment: 24 pages, 8 figures; new version answering reviewers' comments; the
paper is now accepted for publication in the IEEE Transactions on Industrial
Electronics; the paper is now publishe
Asynchronous online ADMM for consensus problems
In this paper, we consider the consensus problem where a set of nodes cooperate to minimize a global cost. In particular, we consider an online setting and propose an online algorithm based on the alternating direction method of multipliers. Besides, we take into account the asynchronous operation of the nodes. In this context, we prove that the algorithm attains sublinear regret on the objective. Finally, we assess numerically the performance of the algorithm in a distributed sparse regression problem
Design of a mixed reality workspace for an expressive humanoid robot
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2006.Includes bibliographical references (p. 25).The MIT Media Laboratory Robotic Life Group's Leonardo is a highly expressive robot used for, among other things, social learning and human-robot teamwork research. A mixed reality workspace was conceived to aid in experimentation and demonstration of human-robot interaction by providing a complex state space and several interaction possibilities. A box concept was selected for its ability to incorporate several interaction mechanisms while allowing for meaningful physical tasks. A first iteration of the system was completed, which was controllable primarily through serial communication with a computer, while providing minimal physical communication. For a second revision of the system, physical interaction devices were developed which could be actuated by either the robot or a human, so as to better explore social interaction. Further development of the project will yield a robust, flexible and expandable tool with which future robot social learning and teamwork research can be performed.by Javier G. Matamoros.S.B
On-line norm synthesis for open Multi-Agent systems
[eng] Multi Agent Systems (MAS) are computerised systems composed of autonomous software agents that interact to solve complex problems. Within a MAS, agents require some mechanism to coordinate their activities. In the MAS literature, norms have been widely used to coordinate agents’ activities. Thus, given a MAS, a major research challenge is how to synthesise a normative system, namely a collection of norms, which supports its agents’ coordination. This dissertation focuses on the automated synthesis of norms for open Multi- Agent Systems. In an open MAS, the agent population may change along time, agents may be developed by third parties and their behaviours are not known beforehand. These particular conditions make specially challenging to synthesise a normative system to govern an open MAS. The MAS literature has mainly investigated two general approaches to norm synthesis: off-line design, and on-line synthesis. The first approach aims at synthesising a normative system at design time. With this aim, it assumes that the MAS state space is known at design time and does not change at runtime. This goes against the nature of open MAS, and thus off-line design is not appropriate to synthesise their norms. Alternatively, on-line norm synthesis considers that norms are synthesised at runtime. Most on-line synthesis research has focused on norm emergence, which considers that agents synthesise their own norms, thus assuming that they have norm synthesis capabilities. Again, this cannot be assumed in open MAS. Against this background, this dissertation introduces a whole computational framework to perform on-line norm synthesis for open Multi-Agent Systems. Firstly, this framework provides a computational model to synthesise norms for a MAS at runtime. Such computational model requires neither knowledge about agents’ behaviours beforehand nor their participation in the norm synthesis pro- cess. Instead, it considers a regulatory entity that observes agents’ interactions at runtime, identifying situations that are undesirable for coordination to sub- sequently synthesise norms that regulate these situations. Our computational model has been conceived to be of general purpose so that it can be employed to synthesise norms in a wide range of application domains by providing little domain-dependent information. Secondly, our framework provides an abstract architecture to implement such regulatory entity (the so-called Norm Synthesis Machine), which observes a MAS and executes a synthesis strategy to synthe- sise norms. Thirdly, our framework encompasses a family of norm synthesis strategies intended to be executed by the Norm Synthesis Machine. Overall, this family of strategies supports multi-objective on-line norm synthesis Our first synthesis strategy, the so-called base, aims at synthesising effective normative systems that successfully avoid situations that are undesirable for a MAS’ coordination. Then, two further strategies (called iron and simon) go beyond effectiveness and also consider compactness as a norm synthesis goal. iron and simon take alternative approaches to synthesise compact normative systems that, in addition to effectively achieve coordination, are as synthetic as possible. This allows them to reduce agents’ computational efforts when reasoning about norms. A fourth strategy, the so-called lion, goes beyond effectiveness and compactness to also consider liberality as a synthesis goal. lion aims at synthesising normative systems that are effective and compact while preserving agents’ freedom to the greatest possible extent. Our final strategy is desmon, which is capable of synthesising norms by considering different degrees of reactivity. desmon allows to adjust the amount of information that is required to decide whether a norm must be included in a normative system or not. Thus, desmon can synthesise norms either by being reactive (i.e., by considering little information), or by being more deliberative (by employing more information). We provide empirical evaluations of our norm synthesis strategies in two application domains: a road traffic domain, and an on-line community domain. In this former domain, we employ these strategies to synthesise effective, compact and liberal normative systems that successfully avoid collisions between cars. In the latter domain, our strategies synthesise normative systems based on users’ complaints about inappropriate contents. In this way, our strategies implement a regulatory approach that synthesises norms when there is enough user consensus about the need for norms. Overall, this thesis advances in the state of the art in norm synthesis by providing a novel computational model, an abstract architecture and a family of strategies for on-line norm synthesis for open Multi-Agent Systems.[cat] Els sistemes Multi-Agent (MAS) són sistemes computeritzats composats d’agents autònoms que interaccionen per resoldre problemes complexos. A un MAS, els agents requereixen algun mecanisme per a coordinar les seves activitats. A la literatura en Sistemes Multi-Agent, les normes han estat àmpliament utilitzades per coordinar les activitats dels agents. Per tant, donat un MAS, un dels majors reptes d’investigació és el de sintetizar el sistema normatiu, és a dir, la col·lecció de normes, que suporti la coordinació dels agents. Aquesta tesi es centra en la síntesi automàtica de normes per sistemes Multi-Agent oberts. A un MAS obert, la població d’agents pot canviar amb el temps, els agents poden ésser desenvolupats per terceres parts, i els comportaments dels agents són desconeguts per endavant. Aquestes condicions particulars fan especialment complicat sintetizar el sistema normatiu que reguli un sistema Multi-Agent obert. En general, la literatura en Sistemes Multi-Agent ha investigat dues aproximacions a la síntesi de normes: disseny off-line, i síntesi on-line. La primera aproximació consisteix a sintetizar un sistema normatiu en temps de disseny. Amb aquest propòsit, aquesta aproximació assumeix que l’espai d’estats d’un MAS és conegut en temps de disseny i no canvia en temps d’execució. Això va contra la natura dels sistemes Multi-Agent oberts, i per tant el disseny off-line no és apropiat per a sintetitzar les seves normes. Com a alternativa, la síntesi on-line considera que les normes són sintetizades en temps d’execució. La majoria de recerca en síntesi on-line s’ha centrat en la emergència de normes, que considera que els agents sintetizen les seves pròpies normes, per tant assumint que tenen la capacitat de sintetitzar-les. Aquestes condicions tampoc no es poden assumir en un MAS obert. Donat això, aquesta tesi introdueix un marc computacional per la síntesi on-line de normes en sistemes Multi-Agent oberts. Primer, aquest marc proveeix un model computacional per sintetizar normes per un MAS en temps d’execució. Aquest model computacional no requereix ni coneixement sobre els comportaments dels agents per endavant ni la seva participación en la síntesi de normes. En canvi, considera que una entitat reguladora observa les interaccions dels agents en temps d’execució, identificant situacions indesitjades per la coordinació i sintetizant normes que regulen aquestes situacions. El nostre model computacional ha estat dissenyat per a ésser de propòsit general per tal que pugui ser utilitzat a la síntesi de normes en un ampli ventall de dominis d’aplicació proporcionant només información clau sobre el domini. Segon, el nostre marc proveeix una arquitectura abstracta per implementar aquesta entitat reguladora, anomenada Màquina de Síntesi, que observa un MAS en temps d’execució i executa una estratègia de síntesi que s’encarrega de sintetizar normes. Tercer, el nostre marc incorpora una familia d’estratègies de síntesi destinades a ésser executades per una màquina de síntesi. En general, aquesta familia d’estratègies soporta la síntesi multi-objectiu i on-line de normes. La nostra primera estratègia, anomenada BASE, està dissenyada per sintetitzar sistemes normatius eficaços que evitin de manera satisfactòria situacions indesitjades per la coordinació d’un sistema Multi-Agent. Després, dues estratègies de síntesi, anomenades IRON i SIMON, van més enllà de la eficàcia i també consideren la compacitat com a objectiu de síntesi. IRON i SIMON prenen aproximacions alternatives a la síntesi de sistemes normatius compactes que, a més d’aconseguir la coordinació de manera efectiva, siguin tant sintètics com fos possible. Això permet a aquestes estratègies reduir els esforços computacionals dels agents a l’hora de raonar sobre les normes. Una quarta estratègia, anomenada LION, va més enllà de la eficàcia i la compacitat per considerar també la liberalitat com a objectiu de síntesi. Lion sintetitza sistemes normatius que són eficaços i compactes mentre preserven la llibertat dels agents tant com sigui possible. La nostra última estratègia és desmon, que és capaç de sintetizar normes considerant diferents graus de reactivitat. desmon permet ajustar la quantitat d’informació necessària per decidir si una norma cal que sigui o no inclosa a un sistema normatiu. DESMON pot sintetizar normes essent reactiu (considerant poca informació), o essent més deliberatiu (considerant més informació). En aquesta tesi presentem avaluacions empíriques de les nostres estratègies de síntesi en dos dominis d’aplicació: el domini del tràfic, i el domini de les comunitats on-line. En aquest primer domini, utilitzem les nostres estratègies per a sintetizar sistemes normatius eficaços, compactes i liberals que eviten colisions entre cotxes. Al segon domini, les nostres estratègies sintetizen sistemes normatius basant-se en les queixes dels usuaris de la comunitat sobre continguts inapropiats. D’aquesta manera, les nostres estratègies implementen un mecanisme de regulació que sintetiza normes quan hi ha suficient consens entre els usuaris sobre la necessitat de normes. Aquesta tesi avança en l’estat de l’art en síntesi de normes al proporcionar un novedós model computacional, una arquitectura abstracta i una familia d’estratègies per la síntesi on-line de normes per sistemes Multi-Agent oberts
Online convex optimization meets sparsity
Tracking time-varying sparse signals is a recent problem
with widespread applications. Techniques derived from compressed
sensing, Lasso, and Kalman filtering have been proposed in the literature,
which mainly present two drawbacks: the prior knowledge of specific
evolution models and the lack of theoretical guarantees. In this work, we
propose a new perspective on the problem, based on the theory on online
convex optimization, which has been developed in the machine learning
community. We exploit a strongly convex model, and we develop online
algorithms, for which we are able to provide a dynamic regret analysis. A
few simulations that support the theoretical results are finally presented
Distributed algorithms for in-network recovery of jointly sparse signals
We propose a new class of distributed algorithms for the in-network reconstruction of jointly sparse signals. We consider a network in which each node has to reconstruct a different signal, but all the signals share the same support. The problem is formulated as follows: each node iteratively solves a lasso, in which the weight of the l1-norm is tuned based on information on the support gathered from the other nodes. This promotes consensus on the support, and allows the single nodes to recover their signals, even when the number of measurements is not sufficient for individual reconstruction. Numerical simulations prove that our method outperforms the state-of-the-art greedy algorithms
Distributed ADMM for In-Network Reconstruction of Sparse Signals With Innovations
In this paper, we tackle the in-network recovery of sparse signals with innovations. We assume that the nodes of the network measure a signal composed by a common component and an innovation, both sparse and unknown, according to the joint sparsity model 1 (JSM-1). Acquisition is performed as in compressed sensing, hence the number of measurements is reduced. Our goal is to show that distributed algorithms based on the alternating direction method of multipliers (ADMM) can be efficient in this framework to recover both the common and the individual components. Specifically, we define a suitable functional and we show that ADMM can be implemented to minimize it in a distributed way, leveraging local communication between nodes. Moreover, we develop a second version of the algorithm, which requires only binary messaging, significantly reducing the transmission load
Distributed Recovery of Jointly Sparse Signals Under Communication Constraints
The problem of the distributed recovery of jointly sparse signals has attracted much attention recently. Let us assume that the nodes of a network observe different sparse signals with common support; starting from linear, compressed measurements, and exploiting network communication, each node aims at reconstructing the support and the non-zero values of its observed signal. In the literature, distributed greedy algorithms have been proposed to tackle this problem, among which the most reliable ones require a large amount of transmitted data, which barely adapts to realistic network communication constraints. In this work, we address the problem through a reweighted l1 soft thresholding technique, in which the threshold is iteratively tuned based on the current estimate of the support. The proposed method adapts to constrained networks, as it requires only local communication among neighbors, and the transmitted messages are indices from a finite set. We analytically prove the convergence of the proposed algorithm and we show that it outperforms the state-of-the-art greedy methods in terms of balance between recovery accuracy and communication load
- …