32 research outputs found

    The frog skin-derived antimicrobial peptide esculentin-1a(1-21)nh2 promotes the migration of human hacat keratinocytes in an egf receptor-dependent manner: a novel promoter of human skin wound healing?

    Get PDF
    One of the many functions of skin is to protect the organism against a wide range of pathogens. Antimicrobial peptides (AMPs) produced by the skin epithelium provide an effective chemical shield against microbial pathogens. However, whereas antibacterial/antifungal activities of AMPs have been extensively characterized, much less is known regarding their wound healing-modulatory properties. By using an in vitro re-epithelialisation assay employing special cell-culture inserts, we detected that a derivative of the frog-skin AMP esculentin-1a, named esculentin-1a(1-21)NH2, significantly stimulates migration of immortalized human keratinocytes (HaCaT cells) over a wide range of peptide concentrations (0.025-4 μM), and this notably more efficiently than human cathelicidin (LL-37). This activity is preserved in primary human epidermal keratinocytes. By using appropriate inhibitors and an enzyme-linked immunosorbent assay we found that the peptide-induced cell migration involves activation of the epidermal growth factor receptor and STAT3 protein. These results suggest that esculentin-1a(1-21)NH2 now deserves to be tested in standard wound healing assays as a novel candidate promoter of skin re-epithelialisation. The established ability of esculentin-1a(1-21)NH2 to kill microbes without harming mammalian cells, namely its high anti-Pseudomonal activity, makes this AMP a particularly attractive candidate wound healing promoter, especially in the management of chronic, often Pseudomonas-infected, skin ulcers

    Redox active Double Wall Carbon Nanotubes show intrinsic anti-proliferative effects and modulate autophagy in cancer cells

    Get PDF
    In Double-Walled-Carbon-Nanotubes (DWCNTs) the outer shell screens the inner one from the external environment. As a consequence, the electronic properties of the smaller tube are enhanced and DWCNTs have therefore been advocated for a number of uses. In their raw form theymay contain small metallic clusters, left over from the catalytic process, that can give them a redox activity characterized by redox potentials in the range of one hundred millivolts and able to affect biological systems. Indeed, we find that redox active raw-DWCNTs inhibit rat colorectal cancer cell proliferation by blocking cells in the G2 phase through ROS generation by tumor cells. We show that raw-DWCNTs could also modulate autophagy in tumor cells through induction of intracellular acidification. To the best of our knowledge, this is the first time that DWCNTs have been found to inhibit proliferation and modulate autophagy in cancer cells. Our work further supports previous studies that provided promising results on the possibility of future applications of Carbon Nanotubes (CNTs) in nanomedicine

    Anti-inflammatory effects and antioxidant activity of dihydroasparagusic acid in lipopolysaccharide-activated microglial cells

    No full text
    The activation of microglia and subsequent release of toxic pro-inflammatory factors are crucially associated with neurodegenerative disease, characterized by increased oxidative stress and neuroinflammation, including Alzheimer and Parkinson diseases and multiple sclerosis. Dihydroasparagusic acid is the reduced form of asparagusic acid, a sulfur-containing flavor component produced by Asparagus plants. It has two thiolic functions able to coordinate the metal ions, and a carboxylic moiety, a polar function, which may enhance excretion of the complexes. Thiol functions are also present in several biomolecules with important physiological antioxidant role as glutathione. The aim of this study is to evaluate the anti-inflammatory and antioxidant potential effect of dihydroasparagusic acid on microglial activation in an in vitro model of neuroinflammation. We have used lipopolysaccharide to induce an inflammatory response in primary rat microglial cultures. Our results suggest that dihydroasparagusic acid significantly prevented lipopolysaccharide-induced production of pro-inflammatory and neurotoxic mediators such as nitric oxide, tumor necrosis factor-α, prostaglandin E2, as well as inducible nitric oxide synthase and cyclooxygenase-2 protein expression and lipoxygenase activity in microglia cells. Moreover it effectively suppressed the level of reactive oxygen species and affected lipopolysaccharide-stimulated activation of mitogen activated protein kinase, including p38, and nuclear factor-kB pathway. These results suggest that dihydroasparagusic acid's neuroprotective properties may be due to its ability to dampen induction of microglial activation. It is a compound that can effectively inhibit inflammatory and oxidative processes that are important factors of the etiopathogenesis of neurodegenerative diseases

    Bacterial Biofilm in Chronic Wounds and Possible Therapeutic Approaches

    No full text
    Wound repair and skin regeneration is a very complex orchestrated process that is generally composed of four phases: hemostasis, inflammation, proliferation, and remodeling. Each phase involves the activation of different cells and the production of various cytokines, chemokines, and other inflammatory mediators affecting the immune response. The microbial skin composition plays an important role in wound healing. Indeed, skin commensals are essential in the maintenance of the epidermal barrier function, regulation of the host immune response, and protection from invading pathogenic microorganisms. Chronic wounds are common and are considered a major public health problem due to their difficult-to-treat features and their frequent association with challenging chronic infections. These infections can be very tough to manage due to the ability of some bacteria to produce multicellular structures encapsulated into a matrix called biofilms. The bacterial species contained in the biofilm are often different, as is their capability to influence the healing of chronic wounds. Biofilms are, in fact, often tolerant and resistant to antibiotics and antiseptics, leading to the failure of treatment. For these reasons, biofilms impede appropriate treatment and, consequently, prolong the wound healing period. Hence, there is an urgent necessity to deepen the knowledge of the pathophysiology of delayed wound healing and to develop more effective therapeutic approaches able to restore tissue damage. This work covers the wound-healing process and the pathogenesis of chronic wounds infected by biofilm-forming pathogens. An overview of the strategies to counteract biofilm formation or to destroy existing biofilms is also provided

    Effects of carbonaceous nanoparticles from low-emission and older diesel engines on human skin cells

    No full text
    Diesel exhaust particles (DEP) are major constituents of ambient air pollution and are associated with respiratory and cardiovascular diseases as well skin cell alterations in vitro. The epidermal cells are among the first cell populations exposed to chemical pollutants, including DEP, and are an important source of pro-inflammatory mediators. We evaluated the effects of carbonaceous soot particles from current low-emission (Euro IV) diesel engines on the oxidative and inflammatory response of normal human skin cells and compared the results with those induced by carbonaceous soot particles from an older diesel engine (BS) operating under black smoke conditions. We observed that both soot nanoparticles were spontaneously internalised by keratinocytes and distributed mostly around the cell nucleus. Moreover, at the same mass concentration, Euro IV soot particles exhibited a much higher oxidative, pro-fibrotic and toxic potential on these cell types than soot particles from the older diesel engine. These results are in agreement with and confirm our previous findings on human macrophage cells and strengthen the assumption that, at the same mass concentration, soot particles produced under low emission conditions are more cytotoxic than particles from the older diesel engine. This effect could be assigned to the defective surface structure of Euro IV diesel soot, rendering it highly active. Our findings highlight that the reduction of soot emission in terms of mass does not automatically lead to a reduction of the dangerous effects and show that soot particles from different diesel engines possess different biological behaviour towards human cells. (C) 2011 Elsevier Ltd. All rights reserved

    Alterations of mitochondria in peripheral blood mononuclear cells of vitiligo patients

    No full text
    The possible role for a defective mitochondrial functionality in the pathogenesis of vitiligo was investigated by measuring intracellular levels of reactive oxygen species and of antioxidants, the activity of Krebs cycle enzymes, as well as the effects of inhibitors of the electron transport chain, in peripheral blood mononuclear cells from patients with active or stable disease vs. normal subjects. Plasma glyoxal levels were also determined in the same groups of subjects as an index of systemic oxidative stress. In patients with vitiligo in active phase, we observed an increased intracellular production of reactive oxygen species with a consequent imbalance of the prooxidant/antioxidant equilibrium, whereas plasma did not show apparent alterations in glyoxal levels, ruling out a systemic oxidative stress. In patients with stable disease, the balance between pro-oxidants and anti-oxidants seems to be maintained. Moreover, a marked increase in the expression of mitochondrial malate dehydrogenase activity and a specific sensitivity to electron transport chain complex I inhibitor were observed. Overall, these data provide further evidence for an altered mitochondrial functionality in vitiligo patients
    corecore