386 research outputs found

    Increased 5-hydroxymethylation levels in the sub ventricular zone of the Alzheimer's brain

    Get PDF
    © 2016 The Authors. The subventricular zone (SVZ) is a site of neurogenesis in the aging brain, and epigenetic mechanisms have been implicated in regulating the "normal" distribution of new nerve cells into the existing cellular milieu. In a case-control study of human primary SVZ cultures and fixed tissue from the same individuals, we have found significant increases in DNA hydroxymethylation levels in the SVZ of Alzheimer's disease patients compared with nondiseased control subjects. We show that this increase in hydroxymethylation directly correlates to an increase in cellular proliferation in Alzheimer's disease precursor cells, which implicates the hydroxymethylation tag to a higher degree of cellular proliferation

    Statically Analyzing Information Flows - An Abstract Interpretation-based Hyperanalysis for Non-Interference.

    Get PDF
    In the context of systems security, information flows play a central role. Unhandled information flows potentially leave the door open to very dangerous types of attacks, such as code injection or sen- sitive information leakage. Information flows verification is based on the definition of Non-Interference [8], which is known to be an hyperproperty [7], i.e., a property of sets of executions. The sound verification of hyperproperties is not trivial [3, 16]: It is not easy to adapt classic verification methods, used for trace properties, in order to deal with hyperproperties. In the present work, we design an abstract interpretation-based static analyzer soundly checking Non-Interference. In particular, we define an hyper abstract do- main, able to approximate the information flows occurring in the analyzed programs

    Epigenetic Differences in Cortical Neurons from a Pair of Monozygotic Twins Discordant for Alzheimer's Disease

    Get PDF
    DNA methylation [1], [2] is capable of modulating coordinate expression of large numbers of genes across many different pathways, and may therefore warrant investigation for their potential role between genes and disease phenotype. In a rare set of monozygotic twins discordant for Alzheimer's disease (AD), significantly reduced levels of DNA methylation were observed in temporal neocortex neuronal nuclei of the AD twin. These findings are consistent with the hypothesis that epigenetic mechanisms may mediate at the molecular level the effects of life events on AD risk, and provide, for the first time, a potential explanation for AD discordance despite genetic similarities

    Seasonal changes in a sandy beach fish assemblage at Canto Grande, Santa Catarina, South Brazil

    Get PDF
    Copyright © 2004 Coastal Education and Research Foundation (CERF).Neste trabalho realizaramse amostragens, com uma rede de praia, de modo a estudar a comunidade de peixes de substrato arenoso na enseada de Canto Grande, Santa Catarina, Brasil. As amostragens realizaramse em intervalos de 3 horas durante períodos de 24 h, numa base bimensal, entre Abril de 1996 e Fevereiro de 1997. Verificouse existir uma variação sazonal no número de espécies, densidade de peixes e biomassa, tendo os valores mais elevados ocorrido em Fevereiro (38 espécies, 257.6 peixes 1000 mˉ², 2286.4 g 1000 mˉ²). Recolheuse um total de 67 espécies, pertencentes a 56 géneros e a 33 famílias, sendo a comunidade dominada por sete espécies pertencentes a três famílias: Atherinella brasiliensis (Atherinidae); Brevoortia pectinata, Harengula clupeola e Sardinella brasiliensis (Clupeidae); Anchoviella lepidontostole, Cetengraulis edentulus e Lycengraulis grossidens (Engraulidae). Tanto a diversidade de espécies (H′) como a equitabilidade (J′) foram médias a elevadas ao longo do ano devido à baixa dominância. A maior mudança na estrutura da comunidade ocorreu entre os meses de Inverno (Julho e Agosto) e as outras estações. Nenhuma das espécies dominantes pode ser classificada como residente. Os principais predadores foram Pomatomus saltator (Inverno) e Trichiurus lepturus (Verão). A maior parte das espécies observadas foram ou peixes juvenis ou espécies pelágicas de pequeno tamanho e fortemente gregárias.ABSTRACT: A shallow-water fish assemblage, over a soft, sandy bottom, at Canto Grande, Santa Catarina, Brazil, was sampled with a beach seine. Sampling was undertaken at 3 h intervals over 24 h on a bimonthly basis between April 1996 and February 1997. There was a seasonal variation in the number of species, density of fishes and biomass with the highest values in February (38 species, 257.6 fish 1000 mˉ², 2286.4 g 1000 mˉ²). A total of 67 species, belonging to 56 genera and 33 families were collected and the assemblage was dominated by seven species belonging to three families: Atherinella brasiliensis (Atherinidae); Brevoortia pectinata, Harengula clupeola and Sardinella brasiliensis (Clupeidae); Anchoviella lepidontostole, Cetengraulis edentulus and Lycengraulis grossidens (Engraulidae). Species diversity (H′) and equitability (J′) were medium to high throughout the year due to the low dominance. The largest change in the assemblage structure occurred between winter months (July and August) and the other seasons. None of the dominant species can be classified as a resident. Main predators were Pomatomus saltator (winter) and Trichiurus lepturus (summer). Most of the species observed were either juvenile fish or small pelagic and strongly gregarious species

    Long term impact of systemic bacterial infection on the cerebral vasculature and microglia

    Get PDF
    Background: Systemic infection leads to generation of inflammatory mediators that result in metabolic and behavioural changes. Repeated or chronic systemic inflammation leads to a state of innate immune tolerance: a protective mechanism against over-activity of the immune system. In this study we investigated the immune adaptation of microglia and brain vascular endothelial cells in response to systemic inflammation or bacterial infection. Methods: Mice were given repeated doses of lipopolysaccharide (LPS) or a single injection of live Salmonella typhimurium. Inflammatory cytokines were measured in serum, spleen and brain, and microglial phenotype studied by immunohistochemistry.mice were infected with Salmonella typhimurium and subsequently challenged with a focal unilateral, intracerebral injection of LPS. Results: Repeated systemic LPS challenges resulted in increased brain IL-1?, TNF? and IL-12 levels, despite attenuated systemic cytokine production. Each LPS challenge induced significant changes in burrowing behaviour. In contrast, brain IL-1? and IL-12 levels in Salmonella typhimurium infected mice increased over three weeks, with high interferon-? levels in the circulation. Behavioural changes were only observed during the acute phase of the infection. Microglia and cerebral vasculature display an activated phenotype, and focal intracerebral injection of LPS 4 weeks after infection results in an exaggerated local inflammatory response when compared to non-infected mice. Conclusions: These studies reveal that the innate immune cells in the brain do not become tolerant to systemic infection, but are primed instead. This may lead to prolonged and damaging cytokine production that may have aprofound effect on the onset and/ or progression of pre-existing neurodegenerative disease.Humans and animals are regularly exposed to bacterial and viral pathogens that can have a considerable impact on our day-to-day living [1]. Upon infection, a set of immune, physiological, metabolic, and behavioural responses is initiated, representing a highly organized strategy of the organism to fight infection. Pro-inflammatory mediators generated in peripheral tissue communicate with the brain to modify behaviour [2], which aids our ability to fight and eliminate the pathogen. The communication pathways from the site of inflammation to the brain have been investigated in animal models and systemic challenge with lipopolysaccharide (LPS) or double stranded RNA (poly I:C) have been widely used to mimic aspects of bacterial and viral infection respectively [3, 4]. These studies have provided evidence that systemically generated inflammatory mediators signal to the brain via both neural and humoral routes, the latter signalling via the circumventricular organs or across the blood-brain barrier (BBB). Signalling into the brain via these routes evokes a response in the perivascular macrophages (PVMs) and microglia, which in turn synthesise diverse inflammatory mediators including cytokines, prostaglandins and nitric oxide [2, 5, 6]. Immune-to-brain communication also occurs in humans who show changes in mood and cognition following systemic inflammation or infection, which are associated with changes in activity in particular regions of the CNS [7-9]. While these changes are part of our normal homeostasis, it is increasingly evident that systemic inflammation has a detrimental effect in animals and also humans, that suffer from chronic neurodegeneration [10, 11]. We, and others, have shown that microglia become primed by on-going neuropathology in the brain, which increases their response towards subsequent inflammatory stimuli, including systemic inflammation [12, 13] Similar findings have been made in aged rodents [14, 15], where it has been shown that there is an exaggerated behavioural and innate immune response in the brainto systemic bacterial and viral infections, but the molecular mechanisms underlying the microglial priming under these conditions is far from understood.Humans and animals are rarely exposed to a single acute systemic inflammatory event: they rather encounter infectious pathogens that replicate in vivo or are exposed to low concentrations of LPS over a prolonged period of time. There is limited information on the impact of non-neurotrophic bacterial infections on the CNS and whether prolonged systemic inflammation will give rise to either a hyper-(priming) or hypo-(tolerance) innate immune response in the brain in response to a subsequent inflammatory stimulus.In this study we measured the levels of cytokines in the serum, spleen and brain as well as assessing sickness behaviour following a systemic bacterial infection using attenuated Salmonella typhimurium SL3261: we compared the effect to that of repeated LPS injections. We show that Salmonella typhimurium caused acute, transient behavioural changes and a robust peripheral immune response that peaks at day 7. Systemic inflammation resulted in a delayed increase in cytokine production in the brain and priming of microglia, which persisted up to four weeks post infection. These effects were not mimicked by repeated LPS challenges. It is well recognised that systemic bacterial and viral infections are significant contributors to morbidity in the elderly [16], and it has been suggested that primed microglia play a role in the increased clinical symptoms seen in patients with Alzheimer’s disease who have systemic inflammation or infections [11, 17]. We show here that systemic infection leads to prolonged cytokine synthesis in the brain and also priming of brain innate immune cells to a subsequent focal inflammatory challenge in the brain parenchyma

    Natural and Vaccine-Mediated Immunity to Salmonella Typhimurium is Impaired by the Helminth Nippostrongylus brasiliensis

    Get PDF
    The impact of exposure to multiple pathogens concurrently or consecutively on immune function is unclear. Here, immune responses induced by combinations of the bacterium Salmonella Typhimurium (STm) and the helminth Nippostrongylus brasiliensis (Nb), which causes a murine hookworm infection and an experimental porin protein vaccine against STm, were examined. Mice infected with both STm and Nb induced similar numbers of Th1 and Th2 lymphocytes compared with singly infected mice, as determined by flow cytometry, although lower levels of secreted Th2, but not Th1 cytokines were detected by ELISA after re-stimulation of splenocytes. Furthermore, the density of FoxP3+ T cells in the T zone of co-infected mice was lower compared to mice that only received Nb, but was greater than those that received STm. This reflected the intermediate levels of IL-10 detected from splenocytes. Co-infection compromised clearance of both pathogens, with worms still detectable in mice weeks after they were cleared in the control group. Despite altered control of bacterial and helminth colonization in co-infected mice, robust extrafollicular Th1 and Th2-reflecting immunoglobulin-switching profiles were detected, with IgG2a, IgG1 and IgE plasma cells all detected in parallel. Whilst extrafollicular antibody responses were maintained in the first weeks after co-infection, the GC response was less than that in mice infected with Nb only. Nb infection resulted in some abrogation of the longer-term development of anti-STm IgG responses. This suggested that prior Nb infection may modulate the induction of protective antibody responses to vaccination. To assess this we immunized mice with porins, which confer protection in an antibody-dependent manner, before challenging with STm. Mice that had resolved a Nb infection prior to immunization induced less anti-porin IgG and had compromised protection against infection. These findings demonstrate that co-infection can radically alter the development of protective immunity during natural infection and in response to immunization
    corecore