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Abstract 24 

 25 

Typhoid and paratyphoid fever have a high incidence worldwide and coexist in many 26 

geographical areas, especially in Low-Middle Income Countries (LMIC) in South and South East 27 

Asia. There is extensive consensus on the urgent need for better and affordable vaccines 28 

against systemic Salmonella infections. Generalized Modules for Membrane Antigens 29 

(GMMA), outer membrane exosomes shed by Salmonella bacteria genetically manipulated to 30 

increase blebbing, resemble the bacterial surface where protective antigens are displayed in 31 

their native environment. 32 

Here we engineered S. Paratyphi A using the pDC5-viaB plasmid to generate GMMA displaying 33 

the heterologous S. Typhi Vi antigen together with the homologous O:2 O-Antigen. The 34 

presence of both Vi and O:2 was confirmed by flow cytometry on bacterial cells and their 35 

amount was quantified on the resulting vesicles through a panel of analytical methods. When 36 

tested in mice, such GMMA induced a strong antibody response against both Vi and O:2 and 37 

these antibodies were functional in a serum bactericidal assay. Our approach yielded a 38 

bivalent vaccine candidate able to induce immune responses against different Salmonella 39 

serovars which could benefit LMIC residents and travellers. 40 

 41 

  42 
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Introduction 43 

Salmonella enterica serovars Typhi (S. Typhi) and Paratyphi (S. Paratyphi) subtypes A, B and C 44 

cause enteric fevers,  a major global-health concern. S. Typhi (Typhoid fever)  causes an 45 

estimated 14.9M cases annually and 116,800 associated deaths with post antimicrobial 46 

relapses in up to 10% of patients and chronic carriage in up to 6% of treated individuals (1); 47 

S. Paratyphi  causes an estimated 3M of paratyphoid fever and approximately 19,000 deaths 48 

annualy (1). These diseases coexist in many geographical areas, especially in Low-Middle 49 

Income Countries (LMIC). S. Typhi incidence is high in South and South East Asia as well as 50 

Africa; an increasing incidence of S. Paratyphi A has been reported over the past 2 decades in 51 

different parts of Asia, including Nepal (2), Cambodia (3), and China (4).  52 

Current treatments for S. enterica infections are hampered by emergence of multi-drug- 53 

resistant strains (5-7, 8).  54 

Vaccines are a powerful tool against systemic Salmonella infections. Several vaccines have 55 

been licensed for the prevention of typhoid fever; however, no vaccine is as yet available 56 

against paratyphoid fever (7, 9). The licensed S. Typhi Ty21a live typhoid vaccine is safe, but 57 

gives moderate protection after multiple dosing (10). Typhoid conjugate vaccines (TCV), in 58 

which S. Typhi Vi capsular polysaccharide is covalently linked to carrier proteins, offer several 59 

potential advantages over earlier generation vaccines, especially enhanced immunogenicity 60 

and ability to induce immune responses in infants (11). Similar strategies are currently being 61 

investigated for the development of a paratyphoid vaccine including live attenuated (LAV) 62 

and non-living vaccines (12). Some recent LAV candidates (e.g. the aroC/ssaVM01ZH09 and 63 

WT05 mutants) showed insufficient immunogenicity (13). LAV can cause lethal infections in 64 

immune-compromised hosts (14-17) and therefore, conjugate vaccines would represent a 65 

much safer alternative. Recently, an O-Antigen (OAg) glycoconjugate based on the 66 
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immunodominant O:2 factor has been proposed as a vaccine against S. Paratyphi A infections 67 

(18, 19).  68 

A bivalent formulation would probably be the wiser choice to induce antibody responses that 69 

can potentially protect against both S. Typhi and S. Paratyphi A. Moreover, such vaccine 70 

combination would increase the commercial attractiveness of the S. Paratyphi A component, 71 

especially considering the disproportionate incidence of the two diseases.  72 

Recently, General Modules for Membrane Antigens (GMMA) have been proposed as an 73 

alternative delivery system for the OAg (20). GMMA are outer membrane vesicles (OMV) 74 

naturally shed by Gram-negative bacteria specifically engineered to increase blebbing and 75 

obtained through a simple and robust manufacturing process possibly leading to affordable 76 

vaccines (21-23). GMMA contain mainly outer membrane proteins and lipopolysaccharides 77 

(LPS) together with luminal periplasmic proteins, .GMMA are highly immunogenic and induce 78 

T-cell-dependent, boostable, isotype-switched, highly functional IgG profiles (24). This is 79 

crucial, given the importance of the quality of the antibody response in protection against 80 

salmonelloses (25, 26). Compared to traditional glycoconjugate vaccines, GMMA have the 81 

added value of combining multiple antigens in a single vaccine component, including 82 

polysaccharides and proteins possibly contributing to clinical protection. Indeed, GMMA from 83 

S. Typhimurium and S. Enteritidis are protective in animal models (24) and a Shigella sonnei 84 

GMMA-based vaccine has been recently shown to be well tolerated and immunogenic in 85 

healthy adults and endemic populations (27-29).  86 

In this study we explored the possibility to induce functional immune responses against S. 87 

Paratyphi A O:2 OAg and S. Typhi Vi polysaccharide antigen using GMMA from S. Paratyphi A 88 

as a delivery system.  89 

 90 
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 91 

Results 92 

Generation and characterization of OMV expressing Vi and OAg-specific antigen.  93 

With the aim to engineer a S. Paratyphi A GMMA-producing strain that would display also the 94 

S. Typhi Vi antigen, S. Paratyphi A strain NVGH2041 (ParA O:2 Vi-), lacking the tolR gene for 95 

increased outer membrane blebbing, was transformed with pDC5-viaB; this is a plasmid which 96 

contains the entire viaB locus from S. Typhi and therefore all genes needed for Vi production 97 

and anchoring to the membrane (30). Simultaneous surface exposure of both Vi and O:2 on 98 

the bacterial surface of the resulting strain, indicated as ParA O:2 Vi+, was confirmed by flow 99 

cytometry using specific anti-O:2 and anti-Vi sera (Figure 1). ParA O:2 Vi+ and O:2 Vi- were 100 

both recognized by the anti-O:2 serum, indicating that the presence of Vi does not hinder the 101 

binding of antibodies to OAg. GMMA were produced from ParA O:2 Vi+ and O:2 Vi- strains and 102 

were fully characterized through a panel of analytical methods. Both sets of GMMA had a 103 

similar size (average size of 72 and 83 nm in diameter, Table 1) as determined by Dynamic 104 

Light Scattering (DLS), and a similar OAg/protien (w/w) ratio as determined by High-105 

Performance Anion Exchange Chromatography-Pulsed Amperometric Detection (HPAEC-106 

PAD). The amount of Vi (µg) in ParA O:2 Vi+ GMMA was ~10 times lower compared to the 107 

amount of OAg. To determine whether such low Vi amount was due to heterologous 108 

expression of the viaB locus in S. Paratyphi A, S. Typhi BRD948 (Typhi O:9 Vi+) and its isogenic 109 

�tviB mutant (Typhi O:9 Vi-) were included as benchmarks in our analysis. Both S. Typhi strains 110 

display OAg containing the immunodominant O:9 factor but only the native BRD948 is Vi+ due 111 

to the presence of the viaB locus in the chromosome. Similarly to what seen for ParA O:2 Vi+, 112 

surface exposure of both Vi and O:9 was detected on the bacterial surface of S. Typhi O:9 Vi+ 113 

(Figure 1). Naturally released OMV were produced from S. Typhi strains and compared to 114 
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GMMA obtained from S. Paratyphi A strains. OMV had more heterogeneous size compared 115 

to GMMA, with average size of 81 and 133 nm in diameter and higher polydispersion index 116 

(Table 1). The OAg/protein (w/w) ratio in S. Typhi O:9 Vi- OMV was similar to that measured 117 

in S. Paratyphi A GMMA, while Typhi O:9 Vi+ OMV showed a higher OAg/protein (w/w) ratio 118 

as compared to the other preparations (Table 1). Importantly, the Vi/protein (w/w) ratio in 119 

Typhi O:9 Vi+ OMV was comparable to that of ParA O:2 Vi+ GMMA (Table 1). 120 

 121 

Immunogenicity of GMMA/OMV in a preclinical murine model.  122 

To test the possibility of inducing immune responses against both Vi and OAg with 123 

OMV/GMMA vaccine candidates, 4 groups of six C57BL/6 mice were immunised 124 

subcutaneously with vesicles prepared from ParA O:2 Vi+, ParA O:2 Vi-, Typhi O:9 Vi+ and Typhi 125 

O:9 Vi-. All animals received a booster vaccination on day 28 and sera were collected from 126 

individual animals on day 42. Each mouse received a dose equivalent to 0.5 µg of Vi antigen; 127 

this dose also resulted in the administration of similar amounts of OAg (Table 2). The 128 

immunogenicity of GMMA/OMV was assessed by measuring total IgG against Vi (Figure 2A), 129 

O:2 (Figure 2B) and O:9 (Figure 2C). ParA O:2 Vi+ and ParA O:2 Vi- GMMA induced similar levels 130 

of anti-O:2 IgG confirming that display of Vi at the surface of the vesicles did not hinder their 131 

ability to induce anti-OAg IgG responses (Figure 2B). Immunization with ParA O:2 Vi+ resulted 132 

in the induction of anti-Vi antibodies (Figure 2A) showing that the Vi antigen was delivered in 133 

immunogenic form when using Vi+ vesicles. Interestingly, the anti-Vi response induced by the 134 

vesicles from the S. Paratyphi A, engineered to display Vi using episomal expression of the 135 

viaB locus, was comparable to that of OMV from the naturally Vi+ serovar Typhi (Figure 2A). 136 

This indicated that it is possible to induce immune responses to Vi using vesicles produced 137 

from strains engineered for heterologous display of Vi. Moreover, S. Typhi O:9 Vi+ and S. Typhi 138 
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O:9 Vi- also induced similar level of anti-O:9 IgG (Figure 2C), once again confirming the lack of 139 

immune interference between Vi and OAg. Next, we tested the functional activity of resulting 140 

sera in a Serum Bactericidal Assay (SBA) using bacterial strains displaying either O:2, O:9 or 141 

Vi. Sera from mice immunized with ParA O:2 Vi+ and ParA O:2 Vi- GMMA showed similar 142 

bactericidal activity against the O:2-displaying S. Paratyphi A test strain (Figure 2E). Thus, 143 

display of Vi on the surface of S. Paratyphi A GMMA does not affect their ability to induce 144 

functional antibody responses capable of mediating bactericidal activity. We confirmed the 145 

ability of ParA O:2 Vi+ GMMA antisera to exert SBA against a C. freundii sensu lato strain, 146 

displaying the Vi antigen, but not any other Salmonella-specific OAg determinants (Figure 2D). 147 

As previously observed in Enzyme-Linked Immunosorbent Assay (ELISA), the functional 148 

activity of anti-Vi antibodies induced by ParA O:2 Vi+ GMMA was comparable to that induced 149 

by Typhi O:9 Vi+ OMV (Figure 2D). This shows that vesicles from ParA O:2 Vi+ and Typhi O:9 150 

Vi+, but not from their Vi- counterparts, can induce functional antibodies able to activate 151 

complement deposition and exert Vi-specific SBA. Finally, sera from mice immunized with 152 

Typhi O:9 Vi+ and Typhi O:9 Vi- OMV also showed similar bactericidal activity against the O:9-153 

displaying S. Enteritids test strain (Figure 2F).  154 

 155 

Discussion 156 

The possibility to deliver multiple antigens and to confer protection against multiple 157 

Salmonella serovars is becoming increasingly important in the light of the awareness of 158 

geographical coexistence of multiple Salmonella diseases such as typhoid and paratyphoid 159 

fever.  160 

In the present study we explored the possibility to produce a vesicle-based bivalent vaccine 161 

candidate against enteric fever, based on GMMA delivering the Vi polysaccharide from S. 162 
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Typhi and the somatic O-Antigen from S. Paratyphi A. Different GMMA preparations were 163 

obtained at small scale and characterized, ensuring reproducibility of the main analytical 164 

characteristics. However, additional work will be needed for the process scale-up, including 165 

evaluation of lot-to-lot consistency. We show that a S. Paratyphi A GMMA engineered to 166 

display the Vi antigen from S. Typhi can induce both anti-Vi and anti-O:2 antibodies. This 167 

indicates that Vi does not render the underlying O-antigen inaccessible for recognition by the 168 

immune system. Furthermore, the immune responses induced by the O- and Vi-antigens are 169 

functional both against O:2+ and Vi+ target strains in a serum bactericidal assay, further 170 

supporting their potential for broad protective activity.  171 

A typhoid-paratyphoid vaccine would be a great asset for LMIC and travelers given that no 172 

paratyphoid vaccines are currently licensed. Glycoconjugates are a well-established bacterial 173 

vaccine approach and have been proposed as strategies against both S. Typhi and S. Paratyphi 174 

A (12, 20). More recently GMMA have been proposed as an alternative delivery system for 175 

OAg (20), particularly attractive when multicomponent preparations are required and when 176 

impoverished communities are the vaccine target population. Compared to traditional 177 

glycoconjugates, GMMA show similar or better immunogenicity and a simpler manufacturing 178 

process (31), representing a promising alternative for the development of affordable 179 

multicomponent vaccines against Salmonella serovars (24).  180 

S. Typhi OMV, naturally displaying the Vi antigen, were included in this study as internal 181 

controls and compared to S. Paratyphi A GMMA engineered to display the heterologous Vi 182 

polysaccharide. No differences were observed either in the amount of Vi found on the 183 

resulting vesicles or in the immunogenicity and functional activity of anti-Vi antibodies elicited 184 

upon immunization. Moreover, S. Typhi OMV were able to induce both anti-Vi and anti-O:9 185 

antibodies, similarly to what observed with ParA O:2 Vi+ GMMA inducing both anti-Vi and 186 
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anti-O:2 antibodies. These OMV therefore induced responses that would target both Vi+ S. 187 

Typhi (anti-Vi and anti-O:9 antibodies) and Vi- S. Typhi isolates, which occur in the field and 188 

are reported to be able to cause disease (32). Our previous work found that the Vi antigen is 189 

rapidly downregulated once the bacteria reach an intracellular location in the infected tissues 190 

with the majority of the bacterial population becoming Vi- and no longer displaying a target 191 

for the immune response (33). Finally, these OMV would also target S. Enteritidis, which 192 

shares the O:9 antigen with S. Typhi.  193 

In summary, our work shows that it is possible to deliver both O- and Vi-antigens using vesicle-194 

based vaccine platforms, thus inducing strong and functional antibody responses against 195 

different polysaccharides. Moreover, the presence of protein antigens on Salmonella 196 

OMV/GMMA may represent an added value for GMMA vaccines compared to other 197 

polysaccharide-based formulations. In conclusion, bacterial outer membrane vesicles 198 

represent a flexible, affordable and highly immunogenic platform for the development of 199 

multivalent Salmonella vaccines. 200 

 201 

Materials and Methods 202 

Bacterial strains and growth conditions 203 

Salmonella Paratyphi A NVGH308 (displaying the O:2 OAg (34)) is the isolate that has been 204 

engineered with a ΔtolR mutation to increase outer membrane blebbing (i.e. GMMA 205 

production), resulting in strain NVGH2041. Serovar Paratyphi A does not naturally produce 206 

the Vi antigen; heterologous display of Vi in S. Paratyphi A ΔtolR strain NVGH2041 was 207 

obtained through episomal expression of the viaB locus using the pDC5-viaB plasmid, a gift 208 

from Prof. Andreas Baumler, University of California Davis (30). These strains are referred to 209 

as ParA O:2 Vi- and ParA O:2 Vi+, respectively. Attenuated S. Typhi BRD948 (Ty2 ΔaroC ΔaroD 210 
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ΔhtrA, naturally displaying the O:9 OAg and Vi antigen (35)) and Salmonella Typhi BRD948 211 

ΔtviB (displaying O:9 but not Vi (36)) strains were used as S. Typhi OMV producing strain 212 

(Typhi O:9 Vi+ and Typhi O:9 Vi-, respectively). All strains were grown at 30°C in liquid Luria-213 

Bertani (LB) medium in rotary shakers for 16 hours. For OMV/GMMA production, overnight 214 

cultures were diluted in HTMC medium (15 g/L Glycerol, 30 g/L Yeast extract, 0.5 g/L MgSO4, 215 

5 g/L KH2PO4, 20 g/L K2HPO4) to 600 nm (OD600) optical density of 0.3 and grown at 30 °C for 216 

8 hours with a liquid to air volume ratio of 1:5. A supplement of a mixture of aromatic amino 217 

acids (Aro mix; 0.04 g/L phenylalanine, 0.04 g/L tryptophan, 0.01 g/L para-aminobenzoic acid 218 

and 0.01 g dihydrobenzoic acid) and 0.04 g/L tyrosine was used for the S. Typhi strains (35). 219 

ParA O:2 Vi+ strain was grown in the presence of 100 µg/mL ampicillin to retain plasmid pDC5-220 

viaB expression. 221 

 222 

Flow Cytometry analysis 223 

To monitor the display of the O and Vi polysaccharide antigens on the surface of 224 

OMV/GMMA-producing strains, bacteria were grown for 16 hours in liquid culture and 225 

analysed by flow cytometry. Bacteria were pelleted at 4,000 x g for 5 minutes, washed with 226 

Phosphate Buffered Saline (PBS), and fixed using Cytofix fixation buffer (BD Biosciences) for 227 

30 minutes. Fixed bacteria were then blocked with PBS containing 3% (w/v) Bovine Serum 228 

Albumin (BSA) for 15 minutes and incubated for 1 hour with rabbit polyclonal sera against 229 

O:2, O:9 or Vi (Denka Saiken), diluted 1:500 in PBS + 1% (w/v) BSA. Rabbit polyclonal sera 230 

against O:4 (Denka Seiken) was used as negative control. Samples were incubated with Alexa 231 

Fluor 488 goat anti-rabbit IgG (Molecular Probes) diluted 1:500 in PBS+1% BSA for 30 minutes. 232 

Flow cytometry analysis was performed using FACS Canto II flow cytometer (BD Biosciences).  233 

 234 
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OMV/GMMA production 235 

OMV and GMMA were purified from the culture supernatant of each bacterial strain and 236 

characterized as previously described (23, 37). Bacteria were pelleted by centrifugation at 237 

5,000 x g for 45 minutes. Cell-free supernatants were collected, filtered through 0.22 µm 238 

Stericups filter (Millipore) and ultra-centrifuged at 175,000 x g for 2 hours at 4°C using a 239 

SW32Ti rotor (Beckman Coulter). Pellets containing OMV/GMMA were resuspended in PBS, 240 

ultra-centrifuged at 175,000 x g for 2 hours, resuspended in PBS, filtered and stored at 4°C 241 

until use. 242 

 243 

Analytical characterisation of GMMA/OMV 244 

GMMA/OMV were characterised in terms of antigen composition and size. Micro BCA kit 245 

(Thermo Scientific) was used for GMMA/OMV total protein quantification using Bovine Serum 246 

Albumin (BSA) as a reference standard and following the manufacturer’s instructions. The 247 

sugar monomers constituting the Vi and O-polysaccharide repeating units were quantified 248 

through HPAEC-PAD, as previously described (38, 39). Particle size distribution of 249 

GMMA/OMV was evaluated by DLS, as previously reported (23, 40). 250 

 251 

Animal experiments 252 

Female C57BL/6 mice were purchased from Envigo UK, and used when over 6 weeks of age 253 

(mean weight 20+3 g). The mice were housed in specific pathogen-free containment facilities 254 

and were allowed water and food ad libitum. Six mice per group were vaccinated 255 

subcutaneously at day 0 and 28 with either GMMA or OMV diluted in saline and normalised 256 

to contain approximately 5 µg of OAg per dose and 0.5 µg of Vi per dose (in case of Vi positive 257 

OMV/GMMA), as reported in Table 1. A separate control group of mice received saline as 258 
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control. Individual sera were collected at day -1 (pooled sera) and at day 42 (individual sera). 259 

All animal experiments were performed in accordance with good animal practice as defined 260 

by the relevant international (Directive of the European Parliament and of the Council on the 261 

Protection of Animals Used for Scientific Purposes, Brussels 543/5) and local (University of 262 

Cambridge) animal welfare guidelines. This research has been regulated under the Animals 263 

(Scientific Procedures) Act 1986 Amendment Regulations 2012 following ethical review by the 264 

University of Cambridge Animal Welfare and Ethical Review Body (AWERB). 265 

 266 

Assessment of anti-Vi and anti-OAg specific total IgG by ELISA 267 

Anti-OAg and anti-Vi antigen specific IgG levels were measured two weeks after the second 268 

immunization (day 42) by ELISA as previously reported (41). Briefly, 96 well round-bottom 269 

Maxisorp microtitre plates (Nunc, Roskilde, Denmark) were coated with 100 µL/well of 270 

antigen overnight at 4°C. OAg purified from S. Paratyphi A (O:2) or S. Enteritidis (O:9), and Vi 271 

purified from C. freundii s.l. were used at 15 µg/mL and 2 µg/mL in carbonate, or at 1 µg/mL 272 

in phosphate buffer, respectively (38, 42). Plates were blocked with PBS + 5% fat-free milk 273 

(Sigma) for 2 hours at room temperature (RT) and afterwards washed 3 times with PBS + 274 

0.05% Tween 20 (PBS-T). Serum samples were diluted 1:100 and 1:4000 in PBS-T 275 

supplemented with 0.1% BSA (diluent buffer) and both dilutions were assayed in triplicate. 276 

After incubation for 2 hours at RT, plates were washed three times with PBS-T, and incubated 277 

at 25°C for 1 hour with anti-mouse goat IgG-Alkaline Phosphatase (Sigma), diluted 1:6000, 278 

1:8800, 1:2600 (for Vi, O:2 or O:9, respectively) in diluent buffer. After washing three times 279 

with PBS-T, plates were developed by adding the alkaline phosphatase substrate (Sigma, 280 

SIGMAFAST N2770) and read at 405 nm and 490 nm using ELx 800 reader (BioTek). ELISA units 281 

were expressed relative to a mouse antigen-specific antibody standard serum curve 282 
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composed by 10 standard points and 2 blank wells (run in duplicate on each plate), with the 283 

best five-parameter fit determined by a modified Hill plot. One ELISA unit is defined as the 284 

reciprocal of the dilution of the standard serum that gives an absorbance value equal to 1 in 285 

this assay.  286 

 287 

Assessment of serum bactericidal activity by SBA. 288 

Individual mouse sera collected at day 42 were heat inactivacted (HI) at 56°C for 30 minutes 289 

prior to being tested in a serum bactericidal assay based on luminescent readout against 290 

Salmonella Paratyphi A NVGH308, Salmonella Enteritids CMCC3014 and Vi-positive 291 

Citrobacter freundii sensu  lato strain 3056 (43, 44). L-SBA was performed in 96-well round 292 

bottom sterile plates (Corning). Dilutions of HI test sera were incubated for 3 hours in 293 

presence of exogenous complement (baby rabbit complement, BRC) and bacteria as 294 

previously described (43). Briefly, an adequate volume of reaction mixture containing the 295 

target bacterial cells (around 100,000 CFU/mL), BRC (50% for S. Enteritidis, 20% for S. 296 

Paratyphi A and 5% for C. freundii s.l.) and buffer (PBS) was added to SBA plates containing HI 297 

sera dilutions and incubated for 3 hours at 37°C. At the end of the incubation, the plates were 298 

centrifuged for 10 min at 4000×g, the supernatant discarded to remove ATP derived from 299 

dead bacteria, and live bacterial pellets resuspended in PBS were transferred to a white 300 

round-bottom 96-well plate (Greiner) and mixed 1:1 v:v with BacTiter-Glo Reagent (Promega). 301 

The reaction was incubated for 5 min at room temperature (RT) in an orbital shaker, and the 302 

luminescence signal was measured using a luminometer (Viktor). A 4-parameter non-linear 303 

regression was applied to raw luminescence for all the sera dilutions tested as previously 304 

described (45). The SBA titer is reported in IC50, defined as serum dilutions giving 50% 305 

inhibition of the ATP level in the negative control well. Titers below the minimum measurable 306 
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level of luminescence were arbitrarily given an IC50=50, representing half of the first dilution 307 

of sera tested (that was 100). GraphPad Prism 7 software (GraphPad Software) was used for 308 

fitting and IC50 determination.  309 

 310 

Statistical analysis - Unpaired, nonparametric t test (Mann-Whitney) was used to determine 311 

the statistically significant differences between gorups, using GraphPad Prism 7 software 312 

(GraphPad Software). 313 

 314 
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Figure Legends 514 

Fig.1. Display of polysaccharide antigens on the bacterial surface. Flow Cytometry analysis 515 

of surface polysaccharides of ParA O:2 Vi-, ParA O:2 Vi+, S. Typhi O:9 Vi+ and S. Typhi O:9 Vi-. 516 

Flow cytometry was performed using rabbit anti-O:2, O:9 and Vi polyclonal serum, followed 517 

by AlexaFluor488-conjugated secondary antibodies. Bacteria stained with a rabbit anti-O:4 518 

polyclonal serum were included as a negative control. 519 

Fig.2. Immunogenic (ELISA) and functional (SBA) assessment of vaccines. Total anti-O:2, 520 

anti-O9 and anti-Vi ELISA IgG (top panels) and SBA titers (IC50) against S. Paratyphi A (O:2-521 

positive), S. Enteritidis (O:9-positive) and C. freundii s.l. (Vi-positive) strains (bottom panels) 522 

are shown. Unpaired, nonparametric t test (Mann-Whitney) was used to determine the 523 

statistically significant differences between gorups (ns=not significant; * p<0.033; ** 524 

p<0.002). 525 
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 539 

Tables 540 

Table 1: GMMA and OMV analytical characterization.   541 

Antigen 

Vi/OAg* 

(w/w) ratio 

% 

Vi/protein* 

(w/w) ratio  

% 

OAg/protein* 

(w/w) ratio   

% 

Z-average 

diameter ** 

(nm) 

Poly-

dispersion 

Index**  

ParA Vi+ GMMA 9.6 4.2 43 83 0.14 

ParA Vi- GMMA NA NA 47 72 0.13 

S. Typhi Vi+ OMV 10.1 5.0 50 133 0.41 

S. Typhi Vi- OMV NA NA 164 81 0.35 

* = OAg content and Vi content were measured by HPAEC-PAD analysis, protein content by 542 

micro BCA and reported ratios calculated. ** = GMMA diameter and polydispersion index 543 

were calculated by DLS. NA = not applicable. 544 

 545 

Table 2: Mice immunogenicity study: antigens and doses. 546 

Group 
Protein 

dose (µg) 

Vi dose 

(µg) 

O:2 

dose 

(µg) 

O:9 

dose 

(µg) 

ParA Vi+ GMMA 12.0 0.5 5.2 0 

ParA Vi- GMMA 11.0 0 5.2 0 

S. Typhi Vi+ OMV 9.9 0.5 0 4.9 

S. Typhi Vi- OMV 3.0 0 0 4.9 
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