4,761 research outputs found

    Quasiperpendicular high Mach number Shocks

    Full text link
    Shock waves exist throughout the universe and are fundamental to understanding the nature of collisionless plasmas. Reformation is a process, driven by microphysics, which typically occurs at high Mach number supercritical shocks. While ongoing studies have investigated this process extensively both theoretically and via simulations, their observations remain few and far between. In this letter we present a study of very high Mach number shocks in a parameter space that has been poorly explored and we identify reformation using in situ magnetic field observations from the Cassini spacecraft at 10 AU. This has given us an insight into quasi-perpendicular shocks across two orders of magnitude in Alfven Mach number (MA) which could potentially bridge the gap between modest terrestrial shocks and more exotic astrophysical shocks. For the first time, we show evidence for cyclic reformation controlled by specular ion reflection occurring at the predicted timescale of ~0.3 {\tau}c, where {\tau}c is the ion gyroperiod. In addition, we experimentally reveal the relationship between reformation and MA and focus on the magnetic structure of such shocks to further show that for the same MA, a reforming shock exhibits stronger magnetic field amplification than a shock that is not reforming.Comment: Accepted and Published in Physical Review Letters (2015

    The contribution of planetary period oscillations towards circulation and mass loss in Saturn’s magnetosphere

    Get PDF
    Magnetic reconnection is a process during which magnetic energy is released as kinetic energy. It is considered a crucial driver of energy transport and mass loss within Saturn's magnetosphere. On long-term timescales, is thought to be predominantly driven by the rapid rotation of equatorially mass-loaded flux tubes (i.e., the Vasyliunas cycle), but there is some non-negligible driving from the solar wind as well (i.e., the Dungey cycle). In this study, we investigate an atmospheric driven phenomenon that modulates Saturn's magnetosphere every ∼10.6–10.8 hr, known as planetary period oscillations (PPOs), as an additional driver of magnetic reconnection at Saturn. Using an empirical model of PPO dynamics and Cassini magnetic field and plasma measurements, we find that PPO-driven magnetic reconnection is likely to occur in Saturn's magnetosphere, however, the occurrence of the phenomenon depends on temporally variable characteristics of the PPO systems and spatial asymmetries within Saturn's equatorial magnetosphere. Thus, it is not expected to be an on-going process. On year-long timescales, we find that PPOs are expected to be on par with the Dungey Cycle in driving circulation within Saturn's magnetosphere. However, on ∼1–2 weeks-long timescales, under specific conditions where PPO-driven reconnection is expected to be active, this phenomenon can become more significant than the Vasyliunas cycle, and thus dominate circulation within Saturn's magnetosphere. On year-long timescales, this process is estimated to remove upwards of ∼20% of the mass loaded into the magnetosphere by Enceladus

    Can the Earth's dynamo run on heat alone?

    Get PDF
    The power required to drive the geodynamo places significant constraints on the heat passing across the core-mantle boundary and the Earth's thermal history. Calculations to date have been limited by inaccuracies in the properties of liquid iron mixtures at core pressures and temperatures. Here we re-examine the problem of core energetics in the light of new first-principles calculations for the properties of liquid iron. There is disagreement on the fate of gravitational energy released by contraction on cooling. We show that only a small fraction of this energy, that associated with heating resulting from changes in pressure, is available to drive convection and the dynamo. This leaves two very simple equations in the cooling rate and radioactive heating, one yielding the heat flux out of the core and the other the entropy gain of electrical and thermal dissipation, the two main dissipative processes. This paper is restricted to thermal convection in a pure iron core; compositional convection in a liquid iron mixture is considered in a companion paper. We show that heat sources alone are unlikely to be adequate to power the geodynamo because they require a rapid secular cooling rate, which implies a very young inner core, or a combination of cooling and substantial radioactive heating, which requires a very large heat flux across the core-mantle boundary. A simple calculation with no inner core shows even higher heat fluxes are required in the absence of latent heat before the inner core formed

    Profitable and Sustainable Grazing Systems for Livestock Producers with Saline Land in Southern Australia

    Get PDF
    Dryland salinity affects over 2.5 M ha in Australia, mostly in southern states and is expanding at 3-5% per year (NLWRA, 2001). The prognosis is for considerable expansion of the area affected by salinity and waterlogging (1217 M ha at equilibrium), because groundwater levels continue to rise and only small-scale land management programmes have been implemented. In addition, many waterways are increasingly saline, especially in the Murray Darling Basin and in Western Australia (WA). Sustainable Grazing on Saline Land (SGSL) addresses the need to make productive use of saline land and water resources. Its research component operates at 12 sites across WA, South Australia (SA), Victoria and New South Wales (NSW) and consists of coordinated activities that have regional relevance and contribute nationally. The programme seeks to develop and demonstrate profitable and sustainable grazing systems on saline land that have positive environmental and social impacts. Whilst there are different priority research issues at each site, data collection is governed by common measurement protocols for salt and water movement, biodiversity, and pasture and animal performance in order to make comparisons and data sharing across sites practical

    Profitable and Sustainable Grazing Systems for Livestock Producers with Saline Land in Southern Australia

    Get PDF
    Dryland salinity affects over 2.5 M ha in Australia, mostly in southern states and is expanding at 3-5% per year (NLWRA, 2001). The prognosis is for considerable expansion of the area affected by salinity and waterlogging (12–17 M ha at equilibrium), because groundwater levels continue to rise and only small-scale land management programmes have been implemented. In addition, many waterways are increasingly saline, especially in the Murray Darling Basin and in Western Australia (WA). Sustainable Grazing on Saline Land (SGSL) addresses the need to make productive use of saline land and water resources. Its research component operates at 12 sites across WA, South Australia (SA), Victoria and New South Wales (NSW) and consists of coordinated activities that have regional relevance and contribute nationally. The programme seeks to develop and demonstrate profitable and sustainable grazing systems on saline land that have positive environmental and social impacts. Whilst there are different priority research issues at each site, data collection is governed by common measurement protocols for salt and water movement, biodiversity, and pasture and animal performance in order to make comparisons and data sharing across sites practical

    Rest-UV Absorption Lines as Metallicity Estimator: the Metal Content of Star-Forming Galaxies at z~5

    Get PDF
    We measure a relation between the depth of four prominent rest-UV absorption complexes and metallicity for local galaxies and verify it up to z~3. We then apply this relation to a sample of 224 galaxies at 3.5 = 4.8) in COSMOS, for which unique UV spectra from DEIMOS and accurate stellar masses from SPLASH are available. The average galaxy population at z~5 and log(M/Msun) > 9 is characterized by 0.3-0.4 dex (in units of 12+log(O/H)) lower metallicities than at z~2, but comparable to z~3.5. We find galaxies with weak/no Ly-alpha emission to have metallicities comparable to z~2 galaxies and therefore may represent an evolved sub-population of z~5 galaxies. We find a correlation between metallicity and dust in good agreement with local galaxies and an inverse trend between metallicity and star-formation rate (SFR) consistent with observations at z~2. The relation between stellar mass and metallicity (MZ relation) is similar to z~3.5, however, there are indications of it being slightly shallower, in particular for the young, Ly-alpha emitting galaxies. We show that, within a "bathtub" approach, a shallower MZ relation is expected in the case of a fast (exponential) build-up of stellar mass with an e-folding time of 100-200 Myr. Due to this fast evolution, the process of dust production and metal enrichment as a function of mass could be more stochastic in the first billion years of galaxy formation compared to later times.Comment: 20 pages, 13 figures, 4 tables; Submitted to Ap

    Examining links between anxiety, reinvestment and walking when talking by older adults during adaptive gait

    Get PDF
    Falls by older adults often result in reduced quality of life and debilitating fear of further falls. Stopping walking when talking (SWWT) is a significant predictor of future falls by older adults and is thought to reflect age-related increases in attentional demands of walking. We examine whether SWWT is associated with use of explicit movement cues during locomotion, and evaluate if conscious control (i.e., movement specific reinvestment) is causally linked to falls-related anxiety during a complex walking task. We observed whether twenty-four older adults stopped walking when talking when asked a question during an adaptive gait task. After certain trials, participants completed a visual-spatial recall task regarding walkway features, or answered questions about their movements during the walk. In a subsequent experimental condition, participants completed the walking task under conditions of raised postural threat. Compared to a control group, participants who SWWT reported higher scores for aspects of reinvestment relating to conscious motor processing but not movement self-consciousness. The higher scores for conscious motor processing were preserved when scores representing cognitive function were included as a covariate. There were no group differences in measures of general cognitive function, visual spatial working memory or balance confidence. However, the SWWT group reported higher scores on a test of external awareness when walking, indicating allocation of attention away from task-relevant environmental features. Under conditions of increased threat, participants self-reported significantly greater state anxiety and reinvestment and displayed more accurate responses about their movements during the task. SWWT is not associated solely with age-related cognitive decline or generic increases in age-related attentional demands of walking. SWWT may be caused by competition for phonological resources of working memory associated with consciously processing motor actions and appears to be causally linked with fall-related anxiety and increased vigilance.This research was supported by The Royal Society (IE131576) and British Academy (SG132820)

    Design and Management of Saltbush-Based Forage Systems to Improve Productivity and Reproductive Performance of Sheep

    Get PDF
    There is evidence that effective shelter can significantly improve lamb survival, but the majority of Australian studies have occurred in small paddocks where the ewes had no choice but to use shelter. In mixed farming systems with large open paddocks, it is unclear if ewes will choose to use shelter for lambing. Our multidisciplinary collaboration examines the use of woody shrubs as an opportunity to improve the survival of twin lambs. In a series of large experiments on commercial farms, we will evaluate the impact of different shrub planting configurations, orientations, and densities on microclimates at the sub-paddock scale. Twin-bearing ewes with GPS trackers will graze a mosaic of shelter options to identify lambing sites relative to climatic conditions at the time of lambing. Relatively palatable and unpalatable shrubs have been planted to explore trade-offs between the attraction of ewes to shelter against declining shelter value, because palatable shrubs are defoliated faster than relatively unpalatable options. A linked project is investigating the use of the same shrub systems to provide shade and antioxidants during joining when temperatures exceed the sheep thermal comfort zone for extended periods in summer. Hardy perennial shrubs such as saltbush offer an opportunity to improve profitability and climate resilience of farming systems, while improving landscape health. Multidisciplinary research is required to understand the benefits and limitations of these systems

    The effects of specimen width on tensile properties of triaxially braided textile composites

    Get PDF
    The objective of this study was to examine the effect of the unit cell architecture on the mechanical response of textile reinforced composite materials. Specifically, the study investigated the effect of unit cell size on the tensile properties of 2D triaxially braided graphite epoxy laminates. The figures contained in this paper reflect the presentation given at the conference. They may be divided into four sections: (1) a short definition of the material system tested; (2) a statement of the problem and a review of the experimental results; (3) experimental results consist of a Moire interferometry study of the strain distribution in the material plus modulus and strength measurements; and (4) a short summary and a description of future work will close the paper
    corecore