64 research outputs found

    Cerebral pressure passivity in newborns with encephalopathy undergoing therapeutic hypothermia

    Get PDF
    We extended our recent modification of the power spectral estimation approach to quantify spectral coherence. We tested both the standard and the modified approaches on simulated data, which showed that the modified approach was highly specific and sensitive to the coupling introduced in the simulation while the standard approach lacked these features. We also applied the modified and standard approaches to quantify the pressure passivity in 4 infants receiving therapeutic hypothermia. This was done by measuring the coupling between continuous cerebral hemoglobin differences and mean arterial blood pressure. Our results showed that the modified approach identified a lower pressure passivity index (PPI, percent time the coherence was above a predefined threshold) than the standard approach (P = 0.0027)

    Coagulopathy in newborns with hypoxic ischemic encephalopathy (HIE) treated with therapeutic hypothermia: A retrospective case-control study

    Get PDF
    Background Newborns with hypoxic ischemic encephalopathy (HIE) are at risk for coagulopathy due to systemic oxygen deprivation. Additionally, therapeutic hypothermia (TH) slows enzymatic activity of the coagulation cascade, leading to constitutive prolongation of routinely assessed coagulation studies. The level of laboratory abnormality that predicts bleeding is unclear, leading to varying transfusion therapy practices. Methods HIE infants treated with TH between 2008–2012 were included in this retrospective study. Initial, minimum (min) and maximum (max) values of International Normalized Ratio (INR), activated partial thromboplastin time (aPTT), fibrinogen (Fib) and platelet (PLT) count (measured twice daily during TH) were collected. Bleeding was defined as clinically significant if associated with 1) decreased hemoglobin (Hb) by 2 g/dL in 24 hours, 2) transfusion of blood products for hemostasis, or 3) involvement of a critical organ system. Laboratory data between the bleeding group (BG) and non-bleeding group (NBG) were compared. Variables that differed significantly between groups were evaluated with Receiver Operating Characteristic Curve (ROC) analyses to determine cut-points to predict bleeding. Results Laboratory and bleeding data were collected from a total of 76 HIE infants with a mean (±SD) birthweight of 3.34 ± 0.67 kg and gestational age of 38.6 ± 1.9 wks. BG included 41 infants. Bleeding sites were intracranial (n = 13), gastrointestinal (n = 19), pulmonary (n = 18), hematuria (n = 11) or other (n = 1). There were no differences between BG and NBG in baseline characteristics (p \u3e 0.05). Both groups demonstrated INR and aPTT values beyond the acceptable reference ranges utilized for full tem newborns. BG had higher initial and max INR, initial aPTT, and lower min PLT and min Fib compared to NBG. ROC analyses revealed that platelet count \u3c130 \u3e× 109/L, fib level2 discriminated BG from NBG. Conclusions Laboratory evidence of coagulopathy is universal in HIE babies undergoing TH. Transfusion strategies to maintain PLT counts \u3e130 × 109/L, fib level \u3e1.5 g/L, and INRpopulation

    Neonatal neurobehavioral abnormalities and MRI brain injury in encephalopathic newborns treated with hypothermia

    Get PDF
    Background Neonatal Encephalopathy (NE) is a prominent cause of infant mortality and neurodevelopmental disability. Hypothermia is an effective neuroprotective therapy for newborns with encephalopathy. Post-hypothermia functional–anatomical correlation between neonatal neurobehavioral abnormalities and brain injury findings on MRI in encephalopathic newborns has not been previously described. Aim To evaluate the relationship between neonatal neurobehavioral abnormalities and brain injury on magnetic resonance imaging (MRI) in encephalopathic newborns treated with therapeutic hypothermia. Study design Neonates with hypoxic ischemic encephalopathy (HIE) referred for therapeutic hypothermia were prospectively enrolled in this observational study. Neurobehavioral functioning was assessed with the NICU network neurobehavioral scale (NNNS) performed at target age 14 days. Brain injury was assessed by MRI at target age 7–10 days. NNNS scores were compared between infants with and without severe MRI injury. Subjects & outcome measures Sixty-eight term newborns (62% males) with moderate to severe encephalopathy underwent MRI at median 8 days (range 5–16) and NNNS at median 12 days of life (range 5–20). Fifteen (22%) had severe injury on MRI. Results Overall Total Motor Abnormality Score and individual summary scores for Non-optimal Reflexes and Asymmetry were higher, while Total NNNS Z-score across cognitive/behavioral domains was lower (reflecting poorer performance) in infants with severe MRI injury compared to those without (p \u3c 0.05). Conclusions Neonatal neurobehavioral abnormalities identified by the NNNS are associated with MRI brain injury in encephalopathic newborns post-hypothermia. The NNNS can provide an early functional assessment of structural brain injury in newborns, which may guide rehabilitative therapies in infants after perinatal brain injury

    Study of the reaction e^{+}e^{-} -->J/psi\pi^{+}\pi^{-} via initial-state radiation at BaBar

    Get PDF
    We study the process e+e−→J/ψπ+π−e^+e^-\to J/\psi\pi^{+}\pi^{-} with initial-state-radiation events produced at the PEP-II asymmetric-energy collider. The data were recorded with the BaBar detector at center-of-mass energies 10.58 and 10.54 GeV, and correspond to an integrated luminosity of 454 fb−1\mathrm{fb^{-1}}. We investigate the J/ψπ+π−J/\psi \pi^{+}\pi^{-} mass distribution in the region from 3.5 to 5.5 GeV/c2\mathrm{GeV/c^{2}}. Below 3.7 GeV/c2\mathrm{GeV/c^{2}} the ψ(2S)\psi(2S) signal dominates, and above 4 GeV/c2\mathrm{GeV/c^{2}} there is a significant peak due to the Y(4260). A fit to the data in the range 3.74 -- 5.50 GeV/c2\mathrm{GeV/c^{2}} yields a mass value 4244±54244 \pm 5 (stat) ±4 \pm 4 (syst)MeV/c2\mathrm{MeV/c^{2}} and a width value 114−15+16114 ^{+16}_{-15} (stat)±7 \pm 7(syst)MeV\mathrm{MeV} for this state. We do not confirm the report from the Belle collaboration of a broad structure at 4.01 GeV/c2\mathrm{GeV/c^{2}}. In addition, we investigate the π+π−\pi^{+}\pi^{-} system which results from Y(4260) decay

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≄20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Search for the standard model Higgs boson in the diphoton decay channel with 4.9fb -1 of pp collision data at √s=7TeV with atlas

    Get PDF
    A search for the standard model Higgs boson is performed in the diphoton decay channel. The data used correspond to an integrated luminosity of 4.9  fb-1 collected with the ATLAS detector at the Large Hadron Collider in proton-proton collisions at a center-of-mass energy of √s=7  TeV. In the diphoton mass range 110–150 GeV, the largest excess with respect to the background-only hypothesis is observed at 126.5 GeV, with a local significance of 2.8 standard deviations. Taking the look-elsewhere effect into account in the range 110–150 GeV, this significance becomes 1.5 standard deviations. The standard model Higgs boson is excluded at 95% confidence level in the mass ranges of 113–115 GeV and 134.5–136 GeV

    Search for the standard model Higgs boson in the diphoton decay channel with 4.9fb -1 of pp collision data at √s=7TeV with atlas

    Get PDF
    A search for the standard model Higgs boson is performed in the diphoton decay channel. The data used correspond to an integrated luminosity of 4.9  fb-1 collected with the ATLAS detector at the Large Hadron Collider in proton-proton collisions at a center-of-mass energy of √s=7  TeV. In the diphoton mass range 110–150 GeV, the largest excess with respect to the background-only hypothesis is observed at 126.5 GeV, with a local significance of 2.8 standard deviations. Taking the look-elsewhere effect into account in the range 110–150 GeV, this significance becomes 1.5 standard deviations. The standard model Higgs boson is excluded at 95% confidence level in the mass ranges of 113–115 GeV and 134.5–136 GeV

    A new approach to define acute kidney injury in term newborns with hypoxic ischemic encephalopathy.

    No full text
    BACKGROUND: Current definitions of acute kidney injury (AKI) are not sufficiently sensitive to identify all newborns with AKI during the first week of life. METHODS: To determine whether the rate of decline of serum creatinine (SCr) during the first week of life can be used to identify newborns with AKI, we reviewed the medical records of 106 term neonates at risk of AKI who were treated with hypothermia for hypoxic ischemic encephalopathy (HIE). RESULTS: Of the newborns enrolled in the study, 69 % showed a normal rate of decline of SCr to ≄50 % and/or reached SCr levels of ≀0.6 mg/dl before the 7th day of life, and therefore had an excellent clinical outcome (control group). Thirteen newborns with HIE (12 %) developed AKI according to an established neonatal definition (AKI-KIDGO group), and an additional 20 newborns (19 %) showed a rate of decline of SCr of CONCLUSIONS: The rate of decline of SCr provides a sensitive approach to identify term newborns with AKI during the first week of life
    • 

    corecore