35 research outputs found

    Human reliability analysis: exploring the intellectual structure of a research field

    Get PDF
    Humans play a crucial role in modern socio-technical systems. Rooted in reliability engineering, the discipline of Human Reliability Analysis (HRA) has been broadly applied in a variety of domains in order to understand, manage and prevent the potential for human errors. This paper investigates the existing literature pertaining to HRA and aims to provide clarity in the research field by synthesizing the literature in a systematic way through systematic bibliometric analyses. The multi-method approach followed in this research combines factor analysis, multi-dimensional scaling, and bibliometric mapping to identify main HRA research areas. This document reviews over 1200 contributions, with the ultimate goal of identifying current research streams and outlining the potential for future research via a large-scale analysis of contributions indexed in Scopus database

    Evaluation of appendicitis risk prediction models in adults with suspected appendicitis

    Get PDF
    Background Appendicitis is the most common general surgical emergency worldwide, but its diagnosis remains challenging. The aim of this study was to determine whether existing risk prediction models can reliably identify patients presenting to hospital in the UK with acute right iliac fossa (RIF) pain who are at low risk of appendicitis. Methods A systematic search was completed to identify all existing appendicitis risk prediction models. Models were validated using UK data from an international prospective cohort study that captured consecutive patients aged 16–45 years presenting to hospital with acute RIF in March to June 2017. The main outcome was best achievable model specificity (proportion of patients who did not have appendicitis correctly classified as low risk) whilst maintaining a failure rate below 5 per cent (proportion of patients identified as low risk who actually had appendicitis). Results Some 5345 patients across 154 UK hospitals were identified, of which two‐thirds (3613 of 5345, 67·6 per cent) were women. Women were more than twice as likely to undergo surgery with removal of a histologically normal appendix (272 of 964, 28·2 per cent) than men (120 of 993, 12·1 per cent) (relative risk 2·33, 95 per cent c.i. 1·92 to 2·84; P < 0·001). Of 15 validated risk prediction models, the Adult Appendicitis Score performed best (cut‐off score 8 or less, specificity 63·1 per cent, failure rate 3·7 per cent). The Appendicitis Inflammatory Response Score performed best for men (cut‐off score 2 or less, specificity 24·7 per cent, failure rate 2·4 per cent). Conclusion Women in the UK had a disproportionate risk of admission without surgical intervention and had high rates of normal appendicectomy. Risk prediction models to support shared decision‐making by identifying adults in the UK at low risk of appendicitis were identified

    Quantification of the gene silencing performances of rationally-designed synthetic small RNAs

    No full text
    Small RNAs (sRNAs) are genetic tools for the efficient and specific tuning of target genes expression in bacteria. Inspired by naturally occurring sRNAs, recent works proposed the use of artificial sRNAs in synthetic biology for predictable repression of the desired genes. Their potential was demonstrated in several application fields, such as metabolic engineering and bacterial physiology studies. Guidelines for the rational design of novel sRNAs have been recently proposed. According to these guidelines, in this work synthetic sRNAs were designed, constructed and quantitatively characterized in Escherichia coli. An sRNA targeting the reporter gene RFP was tested by measuring the specific gene silencing when RFP was expressed at different transcription levels, under the control of different promoters, in different strains, and in single-gene or operon architecture. The sRNA level was tuned by using plasmids maintained at different copy numbers. Results demonstrated that RFP silencing worked as expected in an sRNA and mRNA expression-dependent fashion. A mathematical model was used to support sRNA characterization and to estimate an efficiency-related parameter that can be used to compare the performance of the designed sRNA. Gene silencing was also successful when RFP was placed in a two-gene synthetic operon, while the non-target gene (GFP) in the operon was not considerably affected. Finally, silencing was evaluated for another designed sRNA targeting the endogenous lactate dehydrogenase gene. The quantitative study performed in this work elucidated interesting performance-related and context-dependent features of synthetic sRNAs that will strongly support predictable gene silencing in disparate basic or applied research studies. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11693-015-9177-7) contains supplementary material, which is available to authorized users

    A BioBrick-compatible Vector for Allelic Replacement Using the XylE Gene as Selection Marker

    Get PDF
    BACKGROUND: Circular plasmid-mediated homologous recombination is commonly used for marker-less allelic replacement, exploiting the endogenous recombination machinery of the host. Common limitations of existing methods include high false positive rates due to mutations in counter-selection genes, and limited applicability to specific strains or growth media. Finally, solutions compatible with physical standards, such as the BioBrick™, are not currently available, although they proved to be successful in the design of other replicative or integrative plasmids. FINDINGS: We illustrate pBBknock, a novel BioBrick™-compatible vector for allelic replacement in Escherichia coli. It includes a temperature-sensitive replication origin and enables marker-less genome engineering via two homologous recombination events. Chloramphenicol resistance allows positive selection of clones after the first event, whereas a colorimetric assay based on the xylE gene provides a simple way to screen clones in which the second recombination event occurs. Here we successfully use pBBknock to delete the lactate dehydrogenase gene in E. coli W, a popular host used in metabolic engineering. CONCLUSIONS: Compared with other plasmid-based solutions, pBBknock has a broader application range, not being limited to specific strains or media. We expect that pBBknock will represent a versatile solution both for practitioners, also among the iGEM competition teams, and for research laboratories that use BioBrick™-based assembly procedures. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12575-016-0036-z) contains supplementary material, which is available to authorized users
    corecore