44 research outputs found

    Factors influencing carbon stocks and accumulation rates in eelgrass meadows across New England, USA

    Get PDF
    Increasing the protection of coastal vegetated ecosystems has been suggested as one strategy to compensate for increasing carbon dioxide (CO2) in the atmosphere as the capacity of these habitats to sequester and store carbon exceeds that of terrestrial habitats. Seagrasses are a group of foundation species that grow in shallow coastal and estuarine systems and have an exceptional ability to sequester and store large quantities of carbon in biomass and, particularly, in sediments. However, carbon stocks (Corg stocks) and carbon accumulation rates (Corg accumulation) in seagrass meadows are highly variable both spatially and temporally, making it difficult to extrapolate this strategy to areas where information is lacking. In this study, Corg stocks and Corg accumulation were determined at 11 eelgrass meadows across New England, representing a range of eutrophication and exposure conditions. In addition, the environmental factors and structural characteristics of meadows related to variation in Corg stocks were identified. The objectives were accomplished by assessing stable isotopes of ÎŽ13C and ÎŽ15N as well as %C and %N in plant tissues and sediments, measuring grain size and 210Pb of sediment cores, and through assessing site exposure. Variability in Corg stocks in seagrass meadows is well predicted using commonly measured environmental variables such as grain size distribution. This study allows incorporation of data and insights for the northwest Atlantic, where few studies on carbon sequestration by seagrasses have been conducted

    Hydrothermal activity, functional diversity and chemoautotrophy are major drivers of seafloor carbon cycling

    Get PDF
    Hydrothermal vents are highly dynamic ecosystems and are unusually energy rich in the deep-sea. In situ hydrothermal-based productivity combined with sinking photosynthetic organic matter in a soft-sediment setting creates geochemically diverse environments, which remain poorly studied. Here, we use comprehensive set of new and existing field observations to develop a quantitative ecosystem model of a deep-sea chemosynthetic ecosystem from the most southerly hydrothermal vent system known. We find evidence of chemosynthetic production supplementing the metazoan food web both at vent sites and elsewhere in the Bransfield Strait. Endosymbiont-bearing fauna were very important in supporting the transfer of chemosynthetic carbon into the food web, particularly to higher trophic levels. Chemosynthetic production occurred at all sites to varying degrees but was generally only a small component of the total organic matter inputs to the food web, even in the most hydrothermally active areas, owing in part to a low and patchy density of vent-endemic fauna. Differences between relative abundance of faunal functional groups, resulting from environmental variability, were clear drivers of differences in biogeochemical cycling and resulted in substantially different carbon processing patterns between habitats

    Preparation and use of maize tassels’ activated carbon for the adsorption of phenolic compounds in environmental waste water samples

    Get PDF
    The determination and remediation of three phenolic compounds bisphenol A (BPA), ortho-nitrophenol (o-NTP), parachlorophenol (PCP) in wastewater is reported. The analysis of these molecules in wastewater was done using gas chromatography (GC) × GC time-of-flight mass spectrometry while activated carbon derived from maize tassel was used as an adsorbent. During the experimental procedures, the effect of various parameters such as initial concentration, pH of sample solution, eluent volume, and sample volume on the removal efficiency with respect to the three phenolic compounds was studied. The results showed that maize tassel produced activated carbon (MTAC) cartridge packed solid-phase extraction (SPE) system was able to remove the phenolic compounds effectively (90.84–98.49 %, 80.75–97.11 %, and 78.27–97.08 % for BPA, o-NTP, and PCP, respectively) . The MTAC cartridge packed SPE sorbent performance was compared to commercially produced C18 SPE cartridges and found to be comparable. All the parameters investigated were found to have a notable influence on the adsorption efficiency of the phenolic compounds from wastewaters at different magnitudes

    Dose assessment to workers in a dicalcium phosphate production plant

    No full text
    The production of dicalcium phosphate (DCP) uses phosphate rock (PR) as a raw material. Sedimentary phosphate rocks are enriched with relevant concentrations of natural radionuclides from the 238U decay chain (around 103 Bq·kg-1), leading to the need of controlling potential exposures to radiation of workers and members of the public in accordance with IAEA safety standards. Indeed, phosphate industries are classified as Naturally Occurring Radioactive Material (NORM) industries. Thus, the aim of this work is to assess the radiological risk of the workers in a DCP production plant located in the Iberian Peninsula (South-West Europe), which digests PR with hydrochloric acid. In the present study 238U, 230Th, 222Rn, 210Pb and 210Po concentrations in aerosols (indoor and outdoor areas) are reported. Aerosols showed concentrations between 0.42–92 mBq·m-3 for 238U, 0.24–33 mBq·m-3 for 230Th, 0.67–147 mBq·m-3 for 210Pb and 0.09–34 mBq·m-3 for 210Po. Long-term exposure (four months) of passive 222Rn detectors provided concentrations that ranged from detection limit (< DL) to 121 Bq·m-3 in outdoor areas and from < DL to 211 Bq·m-3 in indoor areas, similar to concentrations obtained from short-term measurements with active detectors from < DL to 117 Bq·m-3 in outdoor areas and from < DL to 318 Bq·m-3 in indoor places. 226Ra accumulation in ebonite and pipe scales were the most important contributions to the ambient dose equivalent H*(10), resulting in 0.07 (background)–27 ”Sv·h-1 with a median value of 1.1 ”Sv·h-1. Average 222Rn air concentrations were lower than the 300 Bq·m-3 limit and therefore, according to European Directive 2013/59/EURATOM, 222Rn concentration is excluded from the worker operational annual effective dose. Thus, considering the inhalation of aerosols and the external dose sources, the total effective dose determined for plant operators was 0.37 mSv·y-1.Postprint (author's final draft

    Dose assessment to workers in a dicalcium phosphate production plant

    No full text
    The production of dicalcium phosphate (DCP) uses phosphate rock (PR) as a raw material. Sedimentary phosphate rocks are enriched with relevant concentrations of natural radionuclides from the 238U decay chain (around 103 Bq·kg-1), leading to the need of controlling potential exposures to radiation of workers and members of the public in accordance with IAEA safety standards. Indeed, phosphate industries are classified as Naturally Occurring Radioactive Material (NORM) industries. Thus, the aim of this work is to assess the radiological risk of the workers in a DCP production plant located in the Iberian Peninsula (South-West Europe), which digests PR with hydrochloric acid. In the present study 238U, 230Th, 222Rn, 210Pb and 210Po concentrations in aerosols (indoor and outdoor areas) are reported. Aerosols showed concentrations between 0.42–92 mBq·m-3 for 238U, 0.24–33 mBq·m-3 for 230Th, 0.67–147 mBq·m-3 for 210Pb and 0.09–34 mBq·m-3 for 210Po. Long-term exposure (four months) of passive 222Rn detectors provided concentrations that ranged from detection limit (< DL) to 121 Bq·m-3 in outdoor areas and from < DL to 211 Bq·m-3 in indoor areas, similar to concentrations obtained from short-term measurements with active detectors from < DL to 117 Bq·m-3 in outdoor areas and from < DL to 318 Bq·m-3 in indoor places. 226Ra accumulation in ebonite and pipe scales were the most important contributions to the ambient dose equivalent H*(10), resulting in 0.07 (background)–27 ”Sv·h-1 with a median value of 1.1 ”Sv·h-1. Average 222Rn air concentrations were lower than the 300 Bq·m-3 limit and therefore, according to European Directive 2013/59/EURATOM, 222Rn concentration is excluded from the worker operational annual effective dose. Thus, considering the inhalation of aerosols and the external dose sources, the total effective dose determined for plant operators was 0.37 mSv·y-1

    A marine heatwave drives massive losses from the world’s largest seagrass carbon stocks

    Get PDF
    Seagrass ecosystems contain globally significant organic carbon (C) stocks. However, climate change and increasing frequency of extreme events threaten their preservation. Shark Bay, Western Australia, has the largest C stock reported for a seagrass ecosystem, containing up to 1.3% of the total C stored within the top metre of seagrass sediments worldwide. On the basis of field studies and satellite imagery, we estimate that 36% of Shark Bay’s seagrass meadows were damaged following a marine heatwave in 2010/2011. Assuming that 10 to 50% of the seagrass sediment C stock was exposed to oxic conditions after disturbance, between 2 and 9 Tg CO2 could have been released to the atmosphere during the following three years, increasing emissions from land-use change in Australia by 4–21% per annum. With heatwaves predicted to increase with further climate warming, conservation of seagrass ecosystems is essential to avoid adverse feedbacks on the climate system

    First 236U data from the Arctic Ocean and use of 236U/238U and 129I/236U as a new dual tracer

    No full text
    The first dataset of 236U/238U in the water column of the Arctic Ocean (AO) is presented and shows the widest range of ratios reported so far in the open ocean, from (5±55±5) to (3840±260)×10−12(3840±260)×10−12. Surface samples and depth profiles were collected during two GEOTRACES expeditions in 2011–2012 and analyzed for the concentrations of 236U and 129I, with the aim of investigating whether the combination of 236U/238U and 129I/236U can be used as a new oceanographic tool in the AO. Results show that the distributions of the 236U/238U and 129I/236U atomic ratios are consistent with the different water masses in the AO. High 236U/238U and 129I/236U ratios in the upper water column (&gt;2000×10−12&gt;2000×10−12 and &gt;200, respectively) illustrate the penetration of Atlantic waters (AW) into the AO. Lower values were found in Pacific waters (PW) and deep waters of the AO. Rivers seem to represent a temporally and spatially-constrained third anthropogenic source of 236U but more data are needed to confirm this. In a simple mixing model, the combination of 236U/238U and 129I/236U reveals a high contribution (&gt;99%) of natural background waters (pre-nuclear era) in the deep and bottom waters of the Amerasian basin, indicating an apparent water mass renewal time of &gt;1000 years. Despite the relatively high apparent age of the Amerasian Basin deep waters, this work shows the potential of using the dual-tracer approach as a new oceanographic tool in the Arctic Ocean.</p
    corecore