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Abstract  38 

Seagrass ecosystems contain globally significant organic carbon (C) stocks. However, 39 

climate change and increasing frequency of extreme events threaten their preservation. 40 

Shark Bay, Western Australia, has the largest C stock reported for a seagrass ecosystem, 41 

containing up to 1.3% of the total C stored within the top meter of seagrass sediments 42 

worldwide. Based on field studies and satellite imagery, we estimate that 36% of Shark 43 

Bay’s seagrass meadows were damaged following a marine heat wave in 2010/11. 44 

Assuming that 10 to 50% of the seagrass sediment C stock was exposed to oxic conditions 45 

after disturbance, between 2 and 9 Tg CO2 could have been released to the atmosphere 46 

during the following three years, increasing emissions from land-use change in Australia 47 

by 4 - 21% per annum. With heat waves predicted to increase with further climate 48 

warming, conservation of seagrass ecosystems is essential to avoid adverse feedbacks on 49 

the climate system.  50 

 51 
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Vegetated coastal ecosystems, including seagrass meadows, mangroves and tidal 65 

marshes, are collectively termed “blue carbon” ecosystems storing globally-relevant 66 

carbon stocks in their sediments and biomass1. Their organic carbon (C) sink capacity is 67 

estimated to be 0.08-0.22 Pg C yr-1 globally2, accounting for an offset of 0.6 - 2% of global 68 

anthropogenic CO2 emissions (49 Pg CO2eq yr-1)3. However, blue carbon ecosystems are in 69 

decline worldwide2, raising concern about a potential re-emission of their C stocks to the 70 

atmosphere as CO2. CO2 emissions from loss of blue carbon ecosystems are estimated at 71 

0.15 - 1.02 Pg CO2 yr-1, which is equivalent to 3 – 19% of those from terrestrial land-use 72 

change4.    73 

Seagrasses are marine flowering plants that consist of 72 species growing across a 74 

wide range of habitats5. Global estimates of C storage in the top meter of seagrass 75 

sediments range from 4.2 to 8.4 Pg C6, although large spatial variability exists related to 76 

differences in biological (e.g., meadow productivity and density), chemical (e.g., 77 

recalcitrance of C) and physical (e.g., hydrodynamics and bathymetry) settings in which 78 

they occur7,8. Since the beginning of the twentieth century, seagrass meadows worldwide 79 

have declined at a median rate of 0.9% yr-1 mostly due to human impacts such as coastal 80 

development or water quality degradation9. Climate change impacts, such as ocean 81 

warming and extreme events (e.g., ENSO), are exacerbating this trend. Marine heat waves 82 

have led to losses of foundation seagrass species that form organic-rich sediment deposits 83 

beneath their canopies (e.g. Posidonia oceanica in the Mediterranean Sea10 and Amphibolis 84 

antarctica in Western Australia11–13). Seagrass losses and the subsequent erosion and 85 

remineralization of their sediment C stocks are likely to continue or intensify under 86 

climate change9, especially in regions where seagrasses live close to their thermal 87 

tolerance limits14. 88 

Shark Bay (Western Australia) (Fig.1) contains one of the largest (4,300 km2) and 89 

most diverse assemblage of seagrasses worldwide15, occupying between 0.7 and 2.4% of 90 

the world seagrass area. Up to 12 seagrass species are found in Shark Bay, storing C in 91 
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their sediments and shaping its geomorphology. The two most notable seagrass banks, the 92 

Wooramel Bank and the Faure Sill, are the result of ~8,000 yr of continuous seagrass 93 

growth16. Despite seagrasses having thrived over millennia in Shark Bay, unprecedented 94 

widespread losses occurred in the austral summer of 2010/2011 in both the above- and 95 

below-ground biomass of the dominant seagrass A. antarctica and to a minor extent P. 96 

australis12,13, the two species forming large continuous beds. For more than 2 months, a 97 

marine heat wave elevated water temperatures 2-4°C above long-term averages17. The 98 

event was associated with unusually strong La Niña conditions during the summer months 99 

that caused an increased transfer of tropical warm waters down the coast of Western 100 

Australia. With increased rates of seawater-warming in the South-East Indian Ocean and 101 

in the continental shelf of Western Australia18, Shark Bay’s seagrass meadows are at risk 102 

from further ocean warming and acute temperature extremes due to their location at the 103 

northern edge of their geographical distribution. This trends could potentially accelerate 104 

the loss of one of the largest remaining seagrass ecosystems on earth, and result in large 105 

CO2 emissions. Based on data from 49 sampled sites19, satellite imagery and a published 106 

model of soil C loss following disturbance20, we quantify the sediment C stocks and 107 

accumulation rates in Shark Bay's seagrasses and estimate the total seagrass area lost 108 

after the marine heat wave. We then provide a comprehensive assessment of the potential 109 

impact of seagrass losses on sediment C stocks and associated CO2 emissions in the short- 110 

(3 years) and long-term (40 years) related to changes from anoxic to oxic conditions of 111 

previously vegetated sediments. 112 

 113 

Sediment C content and sources 114 

The C content of seagrass sediments in Shark Bay varied widely (0.01 - 9.00%), 115 

with the median (1.5%) and mean ± SE (2.00 ± 0.06%) values for the top meter similar to 116 

global estimates (median: 1.8% C; mean ± SE: 2.5 ± 0.1% C)6, though spatial variability 117 

was observed (Fig. 2). C content increased eastwards towards Shark Bay’s main coastline, 118 
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inversely to dry bulk density (DBD) (ρ = -0.69; P ≤ 0.001) (Supplementary Fig. S1 and 119 

Table S1). Seagrass sediments had an average δ13C-value of −13.3 ± 0.1‰ (±SE) 120 

throughout the entire Bay and thickness of the sampled sediment deposits. The δ13C 121 

signatures of potential C sources (seagrasses: -9.4 ± 1.3‰21; terrestrial-derived C from the 122 

Wooramel River:-25.1‰22; seston, i.e., suspended organic matter in the water column: -123 

19.3 ± 2.5‰22 and macroalgae: -18.1 ± 1.8‰21) indicated that seagrasses were the main 124 

sources of sediment C as allochthonous matter (i.e. terrestrial inputs, seston or 125 

macroalgae) could not account for the 13C-enriched C pools stored in seagrass sediments 126 

(Supplementary, Table S2). Using a three source mixing model and literature values for 127 

putative sources, the average contribution of seagrass to the entire depth of the sediment 128 

C stocks was estimated to be ~65% (Supplementary, Fig. S2), higher than the ~50% 129 

estimate of seagrass contribution to surface sediments in seagrass ecosystems globally23.  130 

The predominantly autochthonous nature of sediment C pools in Shark Bay seagrass 131 

meadows and the weak correlation between sediment C and sediment physical properties 132 

such as grain size (Supplementary, Table S1) reinforces their significance for carbon 133 

sequestration. Seagrass detritus contains relatively high amounts of degradation-resistant 134 

compounds24 compared to seston and algal detritus25, which are characterized by faster 135 

decomposition rates26. The relatively high contribution of seagrass matter throughout the 136 

2-3 m thick sediment deposits at Shark Bay is likely related to the low land-derived C 137 

inputs and the stability and high productivity of these meadows, which promotes the 138 

accumulation of thick organic-rich sediments, comparable to those found in P. oceanica 139 

meadows in the Mediterranean Sea27. 140 

 141 

Seagrass C storage hotspot  142 

The C stocks per unit area in the top meter of seagrass sediments in Shark Bay 143 

averaged 128 ± 7 Mg C ha-1 (±SE), with 50% of the stocks having values between 92 and 144 

161 Mg C ha-1 (Q1 and Q3, respectively) (Fig. 3a).  While this is in agreement with reported 145 
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median seagrass sediment C stock at a global scale (140 Mg C ha-1)6, the southeastern half 146 

of Shark Bay (i.e., South Wooramel Bank and Faure Sill) constitutes a hotspot of C storage 147 

(245 ± 6 Mg C ha-1).  Average sediment C stocks in 1 m-thick deposits in Shark Bay are 148 

similar to those in temperate-tropical forests (122 Mg C ha-1) and tidal marshes (160 Mg C 149 

ha-1), while the C stocks in Shark Bay's hotspots compare with those of mangroves and 150 

boreal forests (255 Mg C ha-1 and 296 Mg C ha-1, respectively)6,28. Assuming that the C 151 

stocks in the surveyed area are representative of the entire seagrass extent (4,300 km2), 152 

we estimated that seagrass sediments at Shark Bay contained a total of 55 ± 3 Tg C in the 153 

top 1 meter, which is equivalent to 0.65 - 1.3% of the total C stored in seagrass sediments 154 

worldwide (4.2 - 8.4 Pg C)6.  155 

These estimates are limited to the upper meter of seagrass sediment C stocks (as 156 

are the global estimates) and, therefore, are likely underestimates of full C inventories 157 

since seagrass C deposits reach several meters in thickness in Shark Bay16. Seismic profiles 158 

combined with 14C dating indicate that the seagrass banks here contain a continuous 4,000 159 

yr record of sediment and C accumulation16. This corresponds to an average sediment 160 

thickness of 3.1 ± 0.4 m, as indicated by long-term sediment accumulation rates estimated 161 

in this study (mean ± SE: 0.77 ± 0.11 mm yr-1; Table 1), in agreement with vertical 162 

accretion rates of 1 mm yr-1 published by others16,29 and supported by the dominant 163 

seagrass 13C signature of sediment C along the cores. Based on those, the C stocks 164 

accumulated over the last 4,000 cal yr BP averaged 334 ± 34 Mg C ha-1. Stocks were as high 165 

as 650 Mg C ha-1 towards the south of the Wooramel Bank and Faure Sill, and decreased to 166 

110 Mg C ha-1 towards the northwest (Fig. 3b). Assuming that the average millenary C 167 

deposits studied here are representative throughout the entire seagrass extent (4,300 168 

km2), the seagrass sediments in Shark Bay would have accumulated a total of 144 ± 14 Tg 169 

C over the last 4,000 yr. While Mediterranean P. oceanica meadows have the highest 170 

sediment C stocks per unit area (372 ± 38 Mg C ha-1 in the top meter6 and 1027 ± 314 Mg C 171 
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ha-1 over the last 4,000 yr BP27), the vast extent of Shark Bay’s meadows makes their 172 

sediments the world’s largest seagrass C stocks yet reported for a seagrass ecosystem. 173 

 174 

C sequestration in seagrass sediments 175 

Long term (over 1,000 years) C accumulation rates in Shark Bay seagrass 176 

meadows ranged from 2.5 to 32.1 g C m-2 yr-1, with a median of 11.3 g C m-2 yr-1 (mean ± 177 

SE: 12 ± 2 C m-2 yr-1), while short-term accumulation rates (last 100 years) were estimated 178 

at 15 to 123 g C m-2 yr-1, with a median of 30 g C m-2 yr-1 (mean ± SE: 46 ± 13 g C m-2 yr-1) 179 

(Table 1). These estimates are in the range of modern (i.e. last 100 yr) C accumulation 180 

rates of P. oceanica in the Mediterranean30, P. australis in Australia31,32 and Thalassia 181 

testudinum in Florida Bay33 (26 – 122 g C m-2 yr-1). Both the long- and short-term C 182 

accumulation rates estimated here exceed those of terrestrial forest soils by 3- to 10- fold 183 

(average rates in forest soils: 4.6 ± 1 g C m-2 yr-1)1 and equal short-term C accumulation in 184 

Australian tidal marshes (55 ± 2 g C m-2 yr-1)34.  185 

The 4,300 km2 of seagrass meadows in Shark Bay contemporarily account for a 186 

sequestration of 200 ± 55 Gg C yr-1 (range 65 – 527 Gg C yr-1), which represents 9% of the 187 

C sequestered by Australia's vegetated coastal ecosystems (occupying an area of 110,000 188 

km2)7,34,35. This comparison highlights the disproportionate C sequestration capacity of 189 

Shark Bay seagrasses, contributing significantly to the C sequestration by seagrasses, 190 

mangroves and tidal marshes in Australia. 191 

 192 

CO2 emissions after seagrass loss  193 

Seagrass meadows in Shark Bay experienced extensive declines driven by the 194 

marine heat wave that impacted the coast of Western Australia in the austral summer 195 

2010/1117. Mapping inside the Marine Park (68% of Shark Bay's area) in 2014 revealed a 196 

net reduction of approximately 22% in seagrass habitat from the 2002 baseline (Fig.4). 197 

The net loss of seagrass extent was accompanied by a dramatic shift in seagrass cover 198 
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from dense to sparse across large areas of the Bay, with dense seagrass areas declining 199 

from 72% in 2002 to 46% in 2014 (Table 2). Most losses occurred across the northern half 200 

of the western gulf, and at the northern part of the Wooramel Bank. After the event, water 201 

clarity decreased progressively and significantly due to the loss of sediment stabilization. 202 

In addition, widespread phytoplankton and bacterial blooms were observed in both gulfs 203 

of Shark Bay as a result of increased nutrient inputs to the water column from degraded 204 

seagrass biomass and sediment erosion13, providing favorable conditions to CO2 205 

emissions36. 206 

Losses of C and associated CO2 emissions following degradation of seagrass 207 

ecosystems have been documented previously20. Yet, no studies have evaluated the risk of 208 

CO2 emissions associated with seagrass loss due to thermal stress impacts. Carbon 209 

remineralization to CO2 is accelerated after disturbance through the decomposition of 210 

dead biomass and from the alteration of the physical and/or biogeochemical environment 211 

in which the sediment C was stored36. Vegetation loss also increases the potential for 212 

sediment erosion and sediment resuspension in the water column37, increasing the oxygen 213 

exposure of previously buried sediment organic matter38, leading to 2 to 4 times higher 214 

remineralization of sediment C under oxic than anoxic conditions20. Carbon in the upper 215 

meter of sediments has been considered the most susceptible to remineralization when 216 

seagrass meadows are lost4,6. However, Lovelock et al.20 recently suggested that the 217 

proportions of the C stock that may be exposed to oxic conditions after disturbance in 218 

seagrass ecosystems could be lower than previously assumed, likely due to their 219 

permanently submerged condition and lower levels of exposure to air. Assuming that 220 

between 10 to 50% of the seagrass sediment C stock is exposed to an oxic environment 221 

after disturbance (experiencing a decay of 0.183 yr-1 20), we estimate that between 4 to 22 222 

Mg C ha-1 (4 - 20% of the C stock in the upper meter of sediments) might have been lost in 223 

Shark Bay from previously vegetated sediments during the first 3 years after the marine 224 

heat wave. This may have resulted in the net emission of 16–80 Mg CO2-e ha-1, and 225 
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assuming no seagrass recovery, it could result in cumulative C losses of 10 to 52 Mg C ha-1 226 

or 38–190 Mg CO2-e ha-1 (10-50% of the C stock in the upper meter of sediments) 40 years 227 

after the event. In addition to accelerated sediment C loss, the reduced seagrass standing 228 

stock (i.e. biomass) would in turn lead to a lower capacity of Shark Bay’s seagrasses to 229 

sequester C. The reduction in the modern C sequestration is estimated at 0.46 ± 0.13 Mg C 230 

ha yr-1, and at 52 ± 14 Gg C yr-1 over the ~1,100km2 damaged area. 231 

Excluding potential emissions from remineralization of seagrass biomass and 232 

extrapolating estimates per unit area to the total damaged seagrass area, we estimate that 233 

the widespread loss of seagrasses in Shark Bay in 2010/11 may have resulted in CO2 234 

emissions from sediment C stocks ranging from 2 to 9 Tg CO2 during the following three 235 

years after the event. This can be compared to the 14.4 Tg CO2 estimated to be released 236 

annually from land-use change in Australia39, which did not account for emissions 237 

associated with seagrass losses, hence would have increased the national land-use change 238 

estimate by 4% to 21% per annum. Cumulative emissions due to seagrass die-off could 239 

range between 4 to 21 Tg CO2 after 40 years assuming no seagrass recovery during this 240 

period, a reasonable assumption given that the recovery of A. antarctica and P. australis 241 

has been shown to take decades  (>20 yr)40,41 or not occur over contemporary time 242 

scales13. If damaged seagrass meadows recover, the estimates of CO2 emissions after 40 243 

years might be lower than reported here. In addition, CO2 emissions from organic carbon 244 

remineralization may be partially offset by the net dissolution of the underlying carbonate 245 

sediments42. On the other hand, decomposition rates of C may be enhanced in persistent 246 

vegetated and degraded areas due to increased seawater temperature that influences 247 

respiration43. However, the potential and magnitude of such effects is unclear, and 248 

therefore, were not considered in this study. 249 

 250 

Building resilience for climate change mitigation 251 

Conservation of seagrass meadows and their millenary sediment C deposits is an 252 



 11 

efficient strategy to mitigate climate change, through the preservation of seagrass C 253 

sequestration capacity but especially through avoiding CO2 emissions from sediments 254 

following habitat degradation, which greatly surpass the annual sequestration capacity by 255 

undisturbed seagrass meadows. With increasing frequency of extreme events, there is a 256 

necessity to advance our understanding of how seagrass ecosystems, especially those 257 

living close to their thermal tolerance limit, will respond to global change threats, both 258 

direct and through interactive effects with local pressures. Local threats in Shark Bay 259 

include seagrass loss associated with turbidity and nutrient inputs from flooding 260 

of poorly-managed pastoral leases, release of gypsum from a salt mine, changes in the 261 

trophic dynamics of the system through overfishing or targeted fishing, and more local 262 

damage to seagrasses from vessel propellers and anchors associated with growth in 263 

tourism. Current management at Shark Bay includes the declaration of special zones for 264 

seagrass protection, promoting public awareness of the significance of seagrass, and 265 

providing information on responsible boating (Shark Bay Marine Reserves Management 266 

Plan 1996-2006: https://www.sharkbay.org). These practices are well-suited to localized 267 

stressors, such as eutrophication44, but less-suited to managing global threats such as heat 268 

waves, due to the spatial scale and magnitude of these impacts45.  269 

In the face of global threats, management can aim to maintain or enhance the 270 

resilience of seagrasses46. The heat wave-associated seagrass die-off in 2010/11 mostly 271 

affected A. antarctica followed by P. australis, which are persistent seagrasses with slow 272 

growth rates but capable to build large stores of carbohydrates in their rhizomes41. These 273 

characteristics provide the species with high levels of resistance to disturbance11,12. 274 

However, once lost, their capacity to recover is limited and slow, and largely depends on 275 

the immigration of seeds or seedlings. Therefore, conservation actions to preserve these 276 

seagrass meadows, thereby maintaining their C sequestration capacity and avoiding 277 

greenhouse gas emissions36, should primarily aim to avoid the loss of vegetative material 278 

and prevent local pressures exacerbating those of global change to enhance their 279 

https://www.sharkbay.org)/
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resilience. Actions following acute disturbance could include the removal of seagrass 280 

detritus after die-off to reduce detritus loading, lessening the threat of acute 281 

eutrophication; and the restoration of impacted areas using seed-based restoration 282 

approaches such as the movement of seeds and viviparous seedlings to impacted sites or 283 

the provision of anchoring points in close proximity to donor seagrass meadows to 284 

enhance recovery47,48. Long-term actions should include management to maintain top-285 

down controls so that herbivory is maintained at natural levels49. More contentious 286 

actions could aim to repopulate areas with more resilient seagrass genotypes sourced 287 

from outside the impacted sites50. The wide range of salinity and temperature in the Bay, 288 

together with the uneven loss of meadows following the event in 2010/11, may indicate 289 

differences in adaptation and resilience among meadows across the Bay. This offers the 290 

possibility of identifying heatwave-resistant genotypes and using these to supplement the 291 

genetic diversity and resilience of existing meadows. Genotypic mapping could also allow 292 

identifying the meadows at greatest risk of heat waves where management actions may be 293 

focused. 294 

 Our results show that seagrass meadows from Shark Bay support the largest 295 

seagrass C stocks worldwide, that while making a large contribution to C sequestration by 296 

vegetated coastal ecosystems, their loss may disproportionally add to Australian CO2 297 

emissions. With increasing frequency and intensity of extreme climate events, the 298 

permanence of these C stores might be compromised, further stressing the importance of 299 

reducing green-house gas emissions, and implementing management actions to enhance 300 

and preserve natural carbon sinks.  301 
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Figure Legends 338 

Figure 1. Shark Bay World Heritage Site with spatial distribution of seagrass. The 339 

two most notable seagrass banks are the Faure Sill (FS) and Wooramel (WB) seagrass 340 

banks. The dashed region represents Shark Bay's Marine Park and locations of individual 341 

sites within the study region are represented as solid dots (seagrass spatial distribution 342 

source: ref. 51).  343 

 344 

Figure 2. Spatial distribution of organic carbon in seagrass sediments of Shark Bay. 345 

Measured (a) organic carbon content (%C) and (b) 13C (‰) isotopic signature of C along 346 
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the entire thickness of the sampled sediments. Average 13C values for the main seagrass 347 

banks: Wooramel Bank: -13.83 ± 0.02‰; Faure Sill: -13.0 ± 0.1‰; Peron: -13.4 ± 0.1‰. 348 

 349 

Figure 3. Spatial distribution of organic carbon stocks in seagrass sediments of 350 

Shark Bay. (a) Top meter C stocks; (b) C stocks accumulated over the last 4,000 cal yr BP. 351 

Area with C storage estimates covers 2,000 km2 of seagrass sediments. The integrated 352 

sediment C stock within the 2,000 km2 of surveyed seagrass area was estimated at 24 Tg C 353 

in the top meter and 64 Tg C over the last 4,000 cal yr BP. 354 

 355 

Figure 4. Seagrass extent change within Shark Bay's Marine Park before (2002) and 356 

after (2014) the marine heat wave in 2010/11. Black = dense (> 40%) seagrass cover; 357 

grey = sparse (< 40%) seagrass cover; red = seagrass loss; dark blue = seagrass gain; light 358 

grey = sand; white = no data; gold = marine park boundary. 359 

 360 

 361 

 362 

 363 

 364 

 365 

 366 

 367 

 368 

 369 
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Tables 370 

Table 1. Short- and long-term sedimentation, organic carbon (C) accumulation rates 371 

and sediment C stocks accumulated over the last 4,000 yr BP. Sedimentation and C 372 

accumulation rates were estimated by 210Pb, 14C dating of sediments and the depth-373 

weighted average of C concentrations (short-term normalized to 100 yr depth, and long-374 

term to 1,000 cal yr BP depth). Uncertainties represent SE of the regression and the result 375 

of error propagation for sedimentation rates, and C accumulation rates and stocks, 376 

respectively. 377 

Core ID 

Sedimentation rates (mm yr-1) C accumulation (g C m-2 yr-1) 
Sediment C stocks 

4,000 cal yr BP 

Short-term  
(last 100 yr) 

Long-term 
(last 1,000 - 

6,000 cal yr BP) 

Short-term 
(last 100 yr) 

Long-term (last 
1,000 cal yr BP) 

(Mg C ha-1) 

W3 2.3 ± 0.9 0.58 ± 0.08 77 ± 41 14.1 ± 2.6 369 ± 51 

W4    1.08 ± 0.33    32.1 ± 13.9 1338 ± 390 

FS7 2.3 ± 0.3 1.48 ± 0.06 29 ± 5 12.9 ± 0.7    

FS9 1.7 ± 0.1 0.74 ± 0.03 27 ± 3 8.5 ± 0.4 304 ± 12 

FS11 3.1 ± 0.2    123 ± 14       

FS13 2.6 ± 0.2 0.69 ± 0.02 25 ± 3 8.7 ± 0.3 528 ± 14 

FS14 4.5 ± 0.5 1.31 ± 0.07 45 ± 7 15.2 ± 1.2    

P5    0.43 ± 0.05    6.7 ± 0.3 242 ± 6 

P7    0.66 ± 0.02    11.3 ± 0.3 310 ± 6 

P8    0.39 ± 0.02    2.5 ± 0.1 99 ± 2 

P10 1.8 ± 0.7 0.39 ± 0.01 15 ± 9 6.4 ± 0.3 167 ± 4 

P12 1.6 ± 0.2 0.74 ± 0.03 31 ± 7 16.8 ± 1.1 594 ± 27 

Mean ± SE 2.5 ± 0.3 0.77 ± 0.11 46 ± 13 12 ± 2 439 ± 124 

 378 

 379 

 380 

 381 

 382 

 383 

 384 
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Table 2. Effects of the marine heat wave event to seagrass area and organic carbon 385 

(C) stocks under degraded seagrass meadows. α is the fraction of sediment C stock 386 

within the top meter exposed to oxic conditions. Biomass C loss is not included in the 387 

calculations as much of the primary production might likely be buried or exported, rather 388 

than remineralized in situ. 389 

   Marine Park area 
(8,900 km2) 

Extrapolated values for the entire 
Bay (13,000km2) 

Baseline seagrass area (km2) 2689   4300   

Dense   1925   3096   

Sparse   765   1204   

C stock top meter (Tg C) 34 ± 14 55 ± 22 

       

         
Seagrass area loss 
(km2)  581   929   

Shift to sparse seagrass (km2) 118   190   

Total damaged seagrass area (km2) 699   1125   

         
3 yr net C loss from 1 m sediment stock 
(Tg C)       

 0.10  0.30 ± 0.05 0.49 ± 0.08 

 0.25  0.76 ± 0.10 1.23 ± 0.15 

 0.50  1.52 ± 0.17 2.45 ± 0.27 
40 yr net C loss from 1 m sediment 
stock (Tg C)*       

 0.10  0.72 ± 0.27 1.16 ± 0.53 

 0.25  1.81 ± 0.35 2.91 ± 0.62 

 0.50  3.61 ± 0.50 5.81 ± 0.80 

         

3yr net CO2 emissions (Tg CO2) 1.1 - 5.6 1.8 - 9.0 

40 yr potential CO2 emissions (Tg CO2)* 2.6 - 13.2 4.3 - 21.3 

*Loss and emission after 40 years of disturbance assuming no seagrass recovery. 390 

 391 

 392 

 393 
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 536 

Methods  537 

Seagrass sediments were sampled using PVC cores (100 - 300 cm long, 6.5 cm 538 

internal diameter) that were hammered into the substrate at 0.5 to 4 m water depth. In 539 

the laboratory, the PVC corers were cut lengthwise, and the sediments inside the corers 540 

were sliced at 1 or 3 cm-thick intervals. Analysis of 210Pb, 14C and grain size were 541 

conducted in cores cut at 1 cm resolution (11 cores), while dry bulk density (DBD), %C, 542 

13C were measured in all cores (28 cores) in alternate slices every 3 cm (upper 50 cm), 543 

and every 6 cm (below 50 cm). We combined our data with previously published studies 544 

in Shark Bay involving coring in seagrass sediments7,16,52. From Bufarale and Collins 545 

(2015), we took core FDW2 (here W4) dated by 14C and we analyzed grain size, %C and 546 

13C to include it in the dataset. From Fourqurean et al.52 we included the C data from the 8 547 

long sediment cores (here W5 – W8 and FS15 – FS18) and from Lavery et al.7 we included 548 

C and 13C data of twelve 27 cm-long cores (here P1 and P2) in this study19. Compression 549 

of seagrass sediments during coring was corrected by distributing the spatial discordances 550 

proportionally between the expected and the observed sediment column layers53 and was 551 

accounted for in the calculations of C stocks standardized to 1 m depth and 4,000 cal yr BP. 552 

Average compression was 20% and was applied to published data where compression 553 

existed but was not measured during sampling7,16. Published and unpublished cores from 554 

this study comprised 49 locations covering a range of 3 seagrass genera forming 555 

monospecific and mixed meadows, 34 contained data deeper than 1 meter with 23 sites 556 

extending down to 2-3 meters (Supplementary, Table S3). None of the cores penetrated 557 

the entire thickness of seagrass-accumulated sediment estimated to range from 4 to 6 m16. 558 

The C content of sediments was measured in pre-acidified (with 1 M HCl) samples. 559 

One gram of ground sample was acidified to remove inorganic carbon after weighing, 560 

centrifuged (3,400 revolutions per minute, for 5 min), and the supernatant with acid 561 

residues was carefully removed by pipette, avoiding resuspension. The sample was then 562 
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washed with Milli-Q water, centrifuged and the supernatant removed. The residual 563 

samples were then re-dried at 60ºC and encapsulated in tin capsules for C and δ13C 564 

analyses using an Elemental Analyzer - Isotope Ratio Mass Spectrometer (Hilo Analytical 565 

Laboratory) at the University of Hawaii. C content (%C) was calculated for the bulk (pre-566 

acidified) samples using the formula  ( ). The method 567 

used to remove inorganic carbon prior to C analyses may lead to the loss of part of the 568 

organic C (soluble fraction), thereby potentially leading to an underestimation of sediment 569 

C content54,55. The sediment δ13C signature is expressed as  values in parts per thousand 570 

relative to the Vienna Pee Dee Belemnite. Replicate assays and standards indicated 571 

measurement errors of ±0.04% and ±0.1‰ for C content and 13C, respectively. The 572 

relative contribution of seagrass, macroalgae and seston (that includes living and non 573 

living matter in the water column) and terrestrial matter to seagrass top meter sediment 574 

carbon pools was computed applying a three-component isotope-mixing model as 575 

described by Phillips and Gregg (2003) and calculated by means of the IsoSource Visual 576 

Basic program56, using a 1% increment and 0.1‰ tolerance. We used literature values for 577 

putative C sources and macroalgae and seston were combined as a single C source since 578 

their published 13C endmembers were not significantly different (Supplementary, Table 579 

S2). 580 

Sediment grain-size was measured with a Mastersizer 2000 laser diffraction 581 

particle analyzer following digestion of bulk samples with 10% hydrogen peroxide at the 582 

Centre for Advanced Studies of Blanes. The d50 (i.e. the median particle diameter) was 583 

used as a proxy for  the particle size distribution. Sediments were classified as sand (0.063 584 

- 1 mm), silt (0.004 - 0.063 mm) and clay (< 0.004 mm), and the mud fraction was 585 

calculated as the sum of the fractions of silt and clay (< 0.063 mm) (size scale: Wentworth, 586 

1922)57. Sand:mud ratio was used as a proxy for depositional conditions and 587 

hydrodynamic energy, where higher sand content could be associated with higher energy 588 

environments58. 589 
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Spearman correlation tests were used to assess significant relationships between C 590 

concentrations and environmental (i.e. DBD, d50, %sand, %mud and sand:mud ratio) and 591 

biological (i.e. %C and 13C) variables measured in seagrass sediment cores as none of the 592 

variables followed a normal distribution (Supplementary, Table S1).  593 

Eleven sediment cores were analyzed for 210Pb concentrations to determine recent 594 

(ca. 100 years) sediment accumulation rates. 210Pb was determined through the analysis of 595 

210Po by alpha spectrometry after addition of 209Po as an internal tracer and digestion in 596 

acid media using an analytical microwave59. The concentrations of excess 210Pb used to 597 

obtain the age models were determined as the difference between total 210Pb and 226Ra 598 

(supported 210Pb). Concentrations of 226Ra were determined for selected samples along 599 

each core by low-background liquid scintillation counting method (Wallac 1220 600 

Quantulus) adapted from Masqué et al.60. Mean sediment accumulation rates over the last 601 

100 years could be estimated for eight out of the eleven sediment cores dated using the 602 

CF:CS model below the surface mixed layer when present61. Mixing was common from 0 to 603 

4 cm in half of the dated sediment cores, hence average modern accumulation rates should 604 

be considered as upper limits.  Two to five samples of shells per core from the cores dated 605 

by 210Pb were also radiocarbon-dated at the Direct AMS-Radiocarbon Business Unit, 606 

Accium Biosciences, USA, following standard procedures62. The conventional radiocarbon 607 

ages reported by the laboratory were converted into calendar dates (cal yr BP) using the 608 

Bacon software (Marine13 curve)63 and applying a marine reservoir correction (i.e. 609 

subtracting Delta R value of 85 ± 30 for the East Indian Ocean, Western Australia)64. 610 

Average short-term C accumulation rates were estimated by multiplying sediment 611 

accumulation rates (g cm-2 yr-1) by the fraction of C accumulated to 100 yr depth 612 

determined by 210Pb dating. Bacon model output was used to estimate average long-term 613 

sediment accumulation rates (g cm-2 yr-1) during the last 1,000 yr BP. Long-term C 614 

accumulation rates were determined following the same method as for short-term 615 

accumulation rates, but the fraction of C was normalized to 1,000 cal yr BP, as the 616 
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minimum age of the 14C-dated bottom sediments was 1,117± 61 cal yr BP (Supplementary, 617 

Table S4).  618 

C stocks at the 49 locations were estimated for 1 m sediment thickness and for a 619 

period of accumulation of 4,000 years, similar to the time of formation of the C deposits16. 620 

We standardized the estimates of sediment C stocks to one meter thick deposits since this 621 

allows comparisons with estimates of global stocks. Where necessary (i.e. in 15 cores), we 622 

inferred C stocks below the limits of the reported data to 1 m, extrapolating linearly 623 

integrated values of C content (cumulative C stock Mg C ha-1) with depth. C content was 624 

reported to at least 27 cm in 12 cores out of these 15, while the other 3 cores had C data 625 

down to 55 - 83 cm. Correlation between extrapolated C stocks from 27 cm to 1 m and 626 

measured C stocks in sediment cores ≥ 1 m was  = 0.82 P < 0.001 (Supplementary, Fig. 627 

S3a). Sediment C stocks in the ≥ 1 meter cores ranged from 23 to 322 Mg C ha-1, with a 628 

mean value of 116 ± 13 Mg C ha-1 and median 109 Mg C ha-1. Extrapolating data on 629 

cumulative C stocks from cores of at least 27 cm depth at a further 15 sites to 1 m, we 630 

estimated C storage at those sites to range between 26 and 313 Mg C ha-1, similar to sites 631 

with full inventories. Combining the estimates extrapolated from shallow cores with full 632 

core inventories, the resulting mean and median sediment C storage (103 ± 11 Mg C ha-1 633 

and 73 Mg C ha-1, respectively)(Supplementary, Fig. S4) were not significantly different (P 634 

> 0.05) from those for full core inventories. We applied ordinary kriging to estimate the 635 

top 1 meter C stocks across 2,000 km2 encompassing the South Wooramel Bank, Faure Sill 636 

and Peron Peninsula seagrass banks65,66. We used a maximum of the 16 nearest 637 

neighbours within a search circle of radius 25 km. Ordinary kriging inherently declusters 638 

the input data and produces smoothed estimates, so that the extremely high or low values 639 

found within seagrass meadows of the Bay do not disproportionately influence the global 640 

mean.  641 

We estimated seagrass sediment C stocks accumulated over the last 4,000 years in 642 

1 to 3 m long cores where 14C data were available and the length sampled embraced ≥ 643 
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2,000 yr of sediment and C accumulation (i.e. in 8 cores). The correlation between 644 

extrapolated and measured C stocks was r = 0.90 (P < 0.05) (Supplementary, Fig. S3b). 645 

Bay-wide estimates of sediment C stocks accumulated over 4,000 cal yr BP were estimated 646 

by combining extrapolated and full 4,000 cal yr BP core inventories, and applying 647 

collocated cokriging with top meter C stocks as the secondary variable. Correlation 648 

between top meter and 4,000 yr BP carbon stocks was 0.6 (P < 0.01) and the percentage of 649 

noise specific to the background was set to 20%.  Spatial variability of C stocks was 650 

mapped after applying Ordinary Kriging (OK) to top meter C stocks and collocated co-651 

kriging to millenary C stock (4,000 cal yr BP). 652 

Data on seagrass sediment C stocks accumulated during the last 4,000 yr in P. 653 

oceanica were extracted or extrapolated from published estimates27 of sediment cores 654 

with a sampled depth of at least 2,000 yr, as this is the same method we used to estimate 655 

long-term Corg stocks at Shark Bay.  656 

The extent of seagrass meadows in Shark Bay before and after the extreme climatic 657 

event was determined by the Western Australian Department of Biodiversity, 658 

Conservation and Attractions as part of a broader long-term seagrass monitoring program. 659 

Seagrass extent was derived using a supervised classification of imagery captured by 660 

Landsat–5 Thematic Mapper (TM) in 2002 and Landsat–8 Operational Land Imager (OLI) 661 

in 2014 (United States Geological Survey (glovis.usgs.gov/)). The spatial resolution of 662 

these images is 30 m. The 2002 and 2014 classifications used a combination of historical 663 

ground-truthing, long-term monitoring data and expert knowledge for training sites and 664 

validation. The imagery was classified into three distinct classes; ‘dense seagrass’ (> 40% 665 

cover); ‘sparse seagrass’ (< 40% cover) and ‘other’ which included all remaining habitat 666 

types. The Shark Bay Marine Park (SBMP) covers approximately 8,900 km2 of seafloor. 667 

The seagrass mapping presented here covers approximately 78% of SBMP. The entire 668 

extent was not mapped due to poor image quality caused by depth and water clarity and 669 

the lack of data in some areas.  670 
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Net seagrass area losses and shifts in seagrass cover from dense to sparse were 671 

considered as damaged areas, where the seagrass sediment organic matter is more 672 

exposed oxygen due to erosion and sediment resuspension, hence is more susceptible to 673 

being rapidly remineralized. We modelled the potential CO2 emissions associated with this 674 

disturbance and subsequent remineralization of sediment C stocks using equation 1 based 675 

on varying proportions of sediment C being exposed to oxic conditions following 676 

disturbance:  677 

     (1) 678 

where C (0) is the measured C stock in the top meter,  is the fraction of the C stock 679 

exposed to oxic conditions and k1 is the decomposition rate of seagrass sediment C (0.183 680 

yr-1)20 in oxic sediment conditions. 681 

This required a number of assumption which were: (1) the C stock over the top 682 

meter (Mg C ha-1) of sampled seagrass meadows was representative of the C stock 683 

contained in sediments within the damaged seagrass area prior to the heat-wave; (2) the 684 

fraction of the sediment C in disturbed seagrass meadows exposed to oxic environments 685 

was in the range of 0.1 to 0.5; (3) the potential contribution of seagrass biomass 686 

remineralization to CO2 emissions was not accounted for due to the lack of knowledge 687 

about the export and fate of plant biomass following meadows loss; and (4) there will be 688 

no recovery of seagrass in the long-term (i.e., 40 yr). With the exception of the last 689 

assumption, these were conservative, in an effort to avoid over-estimation of potential CO2 690 

emissions. We assessed the loss of C to the atmosphere after 3 years post disturbance (in 691 

2014) and also assessed potential releases over a 40-year time frame consistent of tier 1 692 

and 2 methods of IPCC (2006) for organic soils. The C stock loss per hectare 3 years and 40 693 

years post disturbance was multiplied by the damaged seagrass area (1,125 km2).  694 

Data availability 695 

Seagrass sediment data on dry bulk density (DBD), C, 13C, 210Pb concentrations and 14C 696 

raw ages that support the findings of this study have been deposited in Edith Cowan 697 
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University Research portal with the identifier doi: 698 

https://dx.doi.org/10.4225/75/5a1640e851af1. 699 
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