1,028 research outputs found
Linking Protection with the Distribution of Grouper and Habitat Quality in Seychelles
Marine protected areas can be designated for a number of reasons, but exactly how they provide benefits is only recently being understood. We assessed the effect of protection on the size and distribution of six common species of grouper in a coral reef ecosystem. Data on live coral cover, coral genus diversity, and coral colony structure type were also compared to give an indication
of reef quality between sites. A significant interaction was found for Aethaloperca rogaa and,
Cephalopholis nigripinni, indicating that protected areas held greater numbers of smaller and median sized fish of these species than unprotected areas. Similar but
nonsignificant trends were found for Cephalopholis miniata
and Cephalopholis argus.For Anyperodon leucogrammicus,MPAs held significantly more fish than unprotected sites,but as the increase was equal between size categories there was no interaction.The last species Epinephelus fasciatus,
which was one of the smallest species, had no significant interaction, similar mean counts between protected and unprotected areas, and no obvious strong favouritism for particular sites with values indicating better reef quality,
indicating intraspecies competition. The results of this study indicate that while the MPAs in this study are likely too small to benefit large groupers, the improvements to habitat quality have indirect benefits to groupers, especially at their earlier life stages
Magnetoconvection in a rotating spherical shell in the presence of a uniform axial magnetic field
We report simulations of thermal convection and magnetic-field generation in a rapidly-rotating spherical shell, in the presence of a uniform axial magnetic field of variable strength. We consider the effect of the imposed field on the critical parameters (Rayleigh number, azimuthal wavenumber and propagation frequency) for the onset of convection, and on the relative importance of Coriolis, buoyancy and Lorentz forces in the resulting solutions. The imposed field strength must be of order one (corresponding to an Elsasser number of unity) to observe significant modifications of the flow; in this case, all the critical parameters are reduced, an effect that is more pronounced at small Ekman numbers. Beyond onset, we study the variations of the structure and properties of the magnetically-modified convective flows with increasing Rayleigh numbers. In particular, we note the weak relative kinetic helicity, the rapid breakdown of the columnarity, and the enhanced heat transport efficiency of the flows obtained for imposed field strengths of order one. Furthermore, magnetic and thermal winds drive a significant zonal flow in this case, which is not present with no imposed field or with stronger imposed fields. The mechanisms for magnetic field generation (particularly the lengthscales involved in the axisymmetric field production) vary with the strength of the imposed field, with three distinct regimes being observed for weak, order one, and stronger imposed fields. In the last two cases, the induced magnetic field reinforces the imposed field, even exceeding its strength for large Rayleigh numbers, which suggests that magnetically-modified flows might be able to produce large-scale self-sustained magnetic field. These magnetoconvection calculations are relevant to planets orbiting magnetically active hosts, and also help to elucidate the mechanisms for field generation in a strong-field regime
Recommended from our members
Climate and Society No. 3: A Better Climate for Disaster Risk Management
Climate-related disasters are by far the most frequent natural disasters, exacting a
heavy toll on people and economies. Their frequency and economic losses have steadily increased over the past few decades, stretching the response capacities of governments and humanitarian organizations. One of the many ways this challenge can be addressed is by making more effective use of the increasing wealth of climate information and tailoring it to the needs of those who could use it, to better predict and prepare for such disasters before they occur.1 Written in partnership with a range of humanitarian organizations, A Better Climate for Disaster Risk Management is the third in the Climate and Society Publication series. This issue highlights recent advances in the use of climate information to manage risks and improve livelihoods, such as new partnerships and user-designed information platforms. It draws together and analyzes experiences from 17 case studies that capture the current state of knowledge. It also highlights research innovations in technical boxes throughout the publication. A problem-solving framework is used to demonstrate the challenges and opportunities facing disaster risk managers in using climate science with a three step approach: indentifying the problem, developing tools, and taking action, reflected
in the chapter titles. The case studies and experiences presented in this book draw on a wealth of practical experience from within the humanitarian community. They acknowledge the enormous effort and investment by very many national and local governments, international organizations, and an increasing range of other actors in the field of climate information for disaster risk management. This publication adds to the growing body of knowledge, focusing on the experiences of a number of mostly non-governmental actors, especially the International Federation of Red Cross and Red Crescent Societies, and how through partnerships, they have helped to integrate state of the art climate science and information into improved decision-making
Hazardous near Earth asteroid mitigation campaign planning based on uncertain information on fundamental asteroid characteristics
Given a limited warning time, an asteroid impact mitigation campaign would hinge on uncertainty-based information consisting of remote observational data of the identified Earth-threatening object, general knowledge of near-Earth asteroids (NEAs), and engineering judgment. Due to these ambiguities, the campaign credibility could be profoundly compromised. It is therefore imperative to comprehensively evaluate the inherent uncertainty in deflection and plan the campaign accordingly to ensure successful mitigation. This research demonstrates dual-deflection mitigation campaigns consisting of primary (instantaneous/quasi-instantaneous) and secondary (slow-push) deflection missions, where both deflection efficiency and campaign credibility are taken into account. The results of the dual-deflection campaign analysis show that there are trade-offs between the competing aspects: the launch cost, mission duration, deflection distance, and the confidence in successful deflection. The design approach is found to be useful for multi-deflection campaign planning, allowing us to select the best possible combination of missions from a catalogue of campaign options, without compromising the campaign credibility
Tryptophan Oxidative Metabolism Catalyzed by Geobacillus Stearothermophilus: A Thermophile Isolated from Kuwait Soil Contaminated with Petroleum Hydrocarbons
Tryptophan metabolism has been extensively studied in humans as well as in soil. Its metabolism takes place mainly through kynurenine pathway yielding hydroxylated, deaminated and many other products of physiological significance. However, tryptophan metabolism has not been studied in an isolated thermophilic bacterium. Geobacillus stearothermophilus is a local thermophile isolated from Kuwait desert soil contaminated with petroleum hydrocarbons. The bacterium grows well at 65 °C in 0.05 M phosphate buffer (pH 7), when supplied with organic compounds as a carbon source and has a good potential for transformation of steroids and related molecules. In the present study, we used tryptophan ethyl ester as a carbon source for the bacterium to study the catabolism of the amino acid at pH 5 and pH 7. In this endeavor, we have resolved twenty one transformation products of tryptophan by GC/LC and have identified them through their mass spectral fragmentation
The transitional gap transient AT 2018hso: new insights into the luminous red nova phenomenon
Context. The absolute magnitudes of luminous red novae (LRNe) are intermediate between those of novae and supernovae (SNe), and show a relatively homogeneous spectro-photometric evolution. Although they were thought to derive from core instabilities in single stars, there is growing support for the idea that they are triggered by binary interaction that possibly ends with the merging of the two stars.
Aims. AT 2018hso is a new transient showing transitional properties between those of LRNe and the class of intermediate-luminosity red transients (ILRTs) similar to SN 2008S. Through the detailed analysis of the observed parameters, our study supports that it actually belongs to the LRN class and was likely produced by the coalescence of two massive stars.
Methods. We obtained ten months of optical and near-infrared photometric monitoring, and 11 epochs of low-resolution optical spectroscopy of AT 2018hso. We compared its observed properties with those of other ILRTs and LRNe. We also inspected the archival Hubble Space Telescope (HST) images obtained about 15 years ago to constrain the progenitor properties.
Results. The light curves of AT 2018hso show a first sharp peak (reddening-corrected M-r = -13.93 mag), followed by a broader and shallower second peak that resembles a plateau in the optical bands. The spectra dramatically change with time. Early-time spectra show prominent Balmer emission lines and a weak [Ca II] doublet, which is usually observed in ILRTs. However, the strong decrease in the continuum temperature, the appearance of narrow metal absorption lines, the great change in the H alpha strength and profile, and the emergence of molecular bands support an LRN classification. The possible detection of a M-I similar to -8 mag source at the position of AT 2018hso in HST archive images is consistent with expectations for a pre-merger massive binary, similar to the precursor of the 2015 LRN in M101.
Conclusions. We provide reasonable arguments to support an LRN classification for AT 2018hso. This study reveals growing heterogeneity in the observables of LRNe than has been thought previously, which is a challenge for distinguishing between LRNe and ILRTs. This suggests that the entire evolution of gap transients needs to be monitored to avoid misclassifications
V405 Aurigae: A High Magnetic Field Intermediate Polar
Our simultaneous multicolor (UBVRI) circular polarimetry has revealed nearly
sinusoidal variation over the WD spin cycle, and almost symmetric positive and
negative polarization excursions. Maximum amplitudes are observed in the B and
V bands (+-3 %). This is the first time that polarization peaking in the blue
has been discovered in an IP, and suggests that V405 Aur is the highest
magnetic field IP found so far. The polarized flux spectrum is similar to those
found in polars with magnetic fields in the range B ~ 25-50 MG. Our low
resolution circular spectropolarimetry has given evidence of transient features
which can be fitted by cyclotron harmonics n = 6, 7, and 8, at a field of B =
31.5 +- 0.8 MG, consistent with the broad-band polarized flux spectrum. Timings
of the circular polarization zero crossovers put strict upper limits on WD spin
period changes and indicate that the WD in V405 Aur is currently accreting
closely at the spin equilibrium rate, with very long synchronization
timescales, T_s > 10^9 yr. For the observed spin to orbital period ratio,
P_{spin}/P_{orb} = 0.0365, and P_{orb} ~ 4.15 hr, existing numerical accretion
models predict spin equilibrium condition with B ~ 30 MG if the mass ratio of
the binary components is q_1 ~ 0.4. The high magnetic field makes V405 Aur a
likely candidate as a progenitor of a polar.Comment: To appear in The Astrophysical Journal, September 1 Issue (2008), 9
pages, 10 figure
Revisiting the Local Scaling Hypothesis in Stably Stratified Atmospheric Boundary Layer Turbulence: an Integration of Field and Laboratory Measurements with Large-eddy Simulations
The `local scaling' hypothesis, first introduced by Nieuwstadt two decades
ago, describes the turbulence structure of stable boundary layers in a very
succinct way and is an integral part of numerous local closure-based numerical
weather prediction models. However, the validity of this hypothesis under very
stable conditions is a subject of on-going debate. In this work, we attempt to
address this controversial issue by performing extensive analyses of turbulence
data from several field campaigns, wind-tunnel experiments and large-eddy
simulations. Wide range of stabilities, diverse field conditions and a
comprehensive set of turbulence statistics make this study distinct
Confined granular packings: structure, stress, and forces
The structure and stresses of static granular packs in cylindrical containers
are studied using large-scale discrete element molecular dynamics simulations
in three dimensions. We generate packings by both pouring and sedimentation and
examine how the final state depends on the method of construction. The vertical
stress becomes depth-independent for deep piles and we compare these stress
depth-profiles to the classical Janssen theory. The majority of the tangential
forces for particle-wall contacts are found to be close to the Coulomb failure
criterion, in agreement with the theory of Janssen, while particle-particle
contacts in the bulk are far from the Coulomb criterion. In addition, we show
that a linear hydrostatic-like region at the top of the packings unexplained by
the Janssen theory arises because most of the particle-wall tangential forces
in this region are far from the Coulomb yield criterion. The distributions of
particle-particle and particle-wall contact forces exhibit
exponential-like decay at large forces in agreement with previous studies.Comment: 11 pages, 11 figures, submitted to PRE (v2) added new references,
fixed typo
- …