1,508 research outputs found
Nanotechnology and molecular cytogenetics: the future has not yet arrived
Quantum dots (QDs) are a novel class of inorganic fluorochromes composed of nanometer-scale crystals made of a semiconductor material. They are resistant to photo-bleaching, have narrow excitation and emission wavelengths that can be controlled by particle size and thus have the potential for multiplexing experiments. Given the remarkable optical properties that quantum dots possess, they have been proposed as an ideal material for use in molecular cytogenetics, specifically the technique of fluorescent in situ hybridisation (FISH). In this review, we provide an account of the current QD-FISH literature, and speculate as to why QDs are not yet optimised for FISH in their current form
Truncated and Helix-Constrained Peptides with High Affinity and Specificity for the cFos Coiled-Coil of AP-1
Protein-based therapeutics feature large interacting surfaces. Protein folding endows structural stability to localised surface epitopes, imparting high affinity and target specificity upon interactions with binding partners. However, short synthetic peptides with sequences corresponding to such protein epitopes are unstructured in water and promiscuously bind to proteins with low affinity and specificity. Here we combine structural stability and target specificity of proteins, with low cost and rapid synthesis of small molecules, towards meeting the significant challenge of binding coiled coil proteins in transcriptional regulation. By iteratively truncating a Jun-based peptide from 37 to 22 residues, strategically incorporating i-->i+4 helix-inducing constraints, and positioning unnatural amino acids, we have produced short, water-stable, alpha-helical peptides that bind cFos. A three-dimensional NMR-derived structure for one peptide (24) confirmed a highly stable alpha-helix which was resistant to proteolytic degradation in serum. These short structured peptides are entropically pre-organized for binding with high affinity and specificity to cFos, a key component of the oncogenic transcriptional regulator Activator Protein-1 (AP-1). They competitively antagonized the cJun–cFos coiled-coil interaction. Truncating a Jun-based peptide from 37 to 22 residues decreased the binding enthalpy for cJun by ~9 kcal/mol, but this was compensated by increased conformational entropy (TDS ≤ 7.5 kcal/mol). This study demonstrates that rational design of short peptides constrained by alpha-helical cyclic pentapeptide modules is able to retain parental high helicity, as well as high affinity and specificity for cFos. These are important steps towards small antagonists of the cJun-cFos interaction that mediates gene transcription in cancer and inflammatory diseases
A prospective cohort study of digital cushion and corium thickness. Part 2: Does thinning of the digital cushion and corium lead to lameness and claw horn disruption lesions?
The aim of this study was to determine whether a decrease in thickness of the sole soft tissues (SST) beneath the flexor tuberosity of the distal phalanx (i.e., the digital cushion and corium) predisposed a claw to develop claw horn disruption lesions (CHDL) or a leg to lameness. Data were analyzed from a longitudinal study of 179 cows, which had been examined at 5 assessment points −8, +1, +9, +17, and +29 wk relative to their first, second, third, or fourth calving. At each assessment point, SST were measured using ultrasonography. Additional assessment point data included sole lesions and back fat thickness (BFT), and cows had been locomotion scored every 2 wk from calving. One hundred fifty-eight cows completed the study. Separate logistic regression survival analyses were constructed to assess the outcomes, either lameness on a leg or CHDL on a claw; combinations of lameness and lesions were tested as outcomes. Cow level variables tested included farm and lactation number. Variables were tested describing previous SST thickness, minimum previous SST thickness, BFT, and change in either variable between prior assessment points. Prior lesions/lameness strongly predicted repeat cases and the final models had the outcome first lesion or lameness on a claw or leg. In the reported lameness models, lameness was defined as a leg being recorded as lame twice within 3 consecutive scores, and in the reported lesion models, lesion was defined as the first presence of either a sole ulcer or a severe sole hemorrhage on a claw. Thin SST increased the likelihood of lesion occurrence; thin SST on the lateral claw predicted subsequent lameness on a leg. Thin BFT and thinning of BFT between previous assessment points increased the likelihood of future lesion occurrence. Thin SST and thinning of BFT had additional effects on the likelihood of lesion occurrence, suggesting that BFT and sole SST had independent effects on lesion occurrence. However, change in SST thickness between assessment points did not influence the likelihood of future lesions or lameness. This suggests that thin SST were not simply a result of depletion of body fat and challenges the theory that thinning of the digital cushion with body fat mobilization leads to CHDL. Other possible mechanisms by which SST become thin are discussed and could include changes in integrity of the suspensory apparatus with physiological events
Spin chirality on a two-dimensional frustrated lattice
The collective behavior of interacting magnetic moments can be strongly
influenced by the topology of the underlying lattice. In geometrically
frustrated spin systems, interesting chiral correlations may develop that are
related to the spin arrangement on triangular plaquettes. We report a study of
the spin chirality on a two-dimensional geometrically frustrated lattice. Our
new chemical synthesis methods allow us to produce large single crystal samples
of KFe3(OH)6(SO4)2, an ideal Kagome lattice antiferromagnet. Combined
thermodynamic and neutron scattering measurements reveal that the phase
transition to the ordered ground-state is unusual. At low temperatures,
application of a magnetic field induces a transition between states with
different non-trivial spin-textures.Comment: 7 pages, 4 figure
The liquid-glass-jamming transition in disordered ionic nanoemulsions
In quenched disordered out-of-equilibrium many-body colloidal systems, there are important distinctions between the glass transition, which is related to the onset of nonergodicity and loss of low-frequency relaxations caused by crowding, and the jamming transition, which is related to the dramatic increase in elasticity of the system caused by the deformation of constituent objects. For softer repulsive interaction potentials, these two transitions become increasingly smeared together, so measuring a clear distinction between where the glass ends and where jamming begins becomes very difficult or even impossible. Here, we investigate droplet dynamics in concentrated silicone oil-in-water nanoemulsions using light scattering. For zero or low NaCl electrolyte concentrations, interfacial repulsions are soft and longer in range, this transition sets in at lower concentrations, and the glass and the jamming regimes are smeared. However, at higher electrolyte concentrations the interactions are stiffer, and the characteristics of the glass-jamming transition resemble more closely the situation of disordered elastic spheres having sharp interfaces, so the glass and jamming regimes can be distinguished more clearly
General Analysis of Antideuteron Searches for Dark Matter
Low energy cosmic ray antideuterons provide a unique low background channel
for indirect detection of dark matter. We compute the cosmic ray flux of
antideuterons from hadronic annihilations of dark matter for various Standard
Model final states and determine the mass reach of two future experiments
(AMS-02 and GAPS) designed to greatly increase the sensitivity of antideuteron
detection over current bounds. We consider generic models of scalar, fermion,
and massive vector bosons as thermal dark matter, describe their basic features
relevant to direct and indirect detection, and discuss the implications of
direct detection bounds on models of dark matter as a thermal relic. We also
consider specific dark matter candidates and assess their potential for
detection via antideuterons from their hadronic annihilation channels. Since
the dark matter mass reach of the GAPS experiment can be well above 100 GeV, we
find that antideuterons can be a good indirect detection channel for a variety
of thermal relic electroweak scale dark matter candidates, even when the rate
for direct detection is highly suppressed.Comment: 44 pages, 15 Figure
Wet Granular Materials
Most studies on granular physics have focused on dry granular media, with no
liquids between the grains. However, in geology and many real world
applications (e.g., food processing, pharmaceuticals, ceramics, civil
engineering, constructions, and many industrial applications), liquid is
present between the grains. This produces inter-grain cohesion and drastically
modifies the mechanical properties of the granular media (e.g., the surface
angle can be larger than 90 degrees). Here we present a review of the
mechanical properties of wet granular media, with particular emphasis on the
effect of cohesion. We also list several open problems that might motivate
future studies in this exciting but mostly unexplored field.Comment: review article, accepted for publication in Advances in Physics;
tex-style change
Six sigma, absorptive capacity and organisational learning orientation
"This is an Accepted Manuscript of an article published by Taylor & Francis in International Journal of Production Research, available online: http://wwww.tandfonline.com/10.1080/00207543.2010.543175."The importance of the Six Sigma methodology in industry is growing constantly. However, there are few empirical studies that analyze the advantages of this methodology and its positive effects on organizational performance. The purpose of this paper is to extend understanding of the success of Six Sigma quality management initiatives by investigating the effects of Six Sigma teamwork and process management on absorptive capacity. It also seeks to understand the relation between absorptive capacity and organizational learning as two sources of sustainable competitive advantage. The information used comes from a larger study, the data for which were collected from a random sample of 237 European firms. Of these 237 organizations, 58 are Six Sigma organizations. Structural Equation Modelling (SEM) was used to test the hypotheses. The main findings show that Six Sigma teamwork and process management positively affect the development of absorptive capacity. A positive and significant relationship is also observed between absorptive capacity and organizational learning orientation. The findings of this study justify Six Sigma implementation in firms. This study provides us with an in-depth understanding of some structural elements that characterize the Six Sigma methodology, enabling us to provide an explanation for its success
Analogue peptides for the immunotherapy of human acute myeloid leukemia
Accepted manuscript. The final publication is available at: http://link.springer.com/article/10.1007%2Fs00262-015-1762-9The use of peptide vaccines, enhanced by adjuvants, has shown some efficacy in clinical trials. However, responses are often short-lived and rarely induce notable memory responses. The reason is that self-antigens have already been presented to the immune system as the tumor develops, leading to tolerance or some degree of host tumor cell destruction. To try to break tolerance against self-antigens, one of the methods employed has been to modify peptides at the anchor residues to enhance their ability to bind major histocompatibility complex molecules, extending their exposure to the T-cell receptor. These modified or analogue peptides have been investigated as stimulators of the immune system in patients with different cancers with variable but sometimes notable success. In this review we describe the background and recent developments in the use of analogue peptides for the immunotherapy of acute myeloid leukemia describing knowledge useful for the application of analogue peptide treatments for other malignancies
- …