33 research outputs found

    Passive remediation of acid mine drainage using cryptocrystalline magnesite: A batch experimental and geochemical modelling approach

    Get PDF
    Acid mine drainage is generated when mining activities expose sulphidic rock to water and oxygen leading to generation of sulphuric acid effluents rich in Fe, Al, SO4 and Mn with minor concentrations of Zn, Cu, Mg, Ca, Pb depending on the geology of the rock hosting the minerals. These effluents must be collected and treated before release into surface water bodies. Mining companies are in constant search for cheaper, effective and efficient mine water treatment technologies. This study assessed the potential of applying magnesite as an initial remediation step in an integrated acid mine drainage (AMD) management system. Neutralization and metal attenuation was evaluated using batch laboratory experiments and simulations using geochemical modelling. Contact of AMD with cryptocrystalline magnesite for 60 min at 1 g: 100 mℓ S/L ratio led to an increase in pH, and a significant increase in metals attenuation. Sulphate concentration was reduced to ≈1 910 mg/ℓ. PH redox equilibrium (in C language) (PHREEQC) geochemical modelling results showed that metals precipitated out of solution to form complex mineral phases of oxy-hydroxysulphates, hydroxides, gypsum and dolomite. The results of this study showed that magnesite has potential to neutralize AMD, leading to the reduction of sulphate and precipitation of metals.SP201

    Natural clay based adsorbent for defluoridation of groundwater: optimization of adsorption conditions

    Get PDF
    Groundwater is the most appropriate and widely used source of drinking water for many rural communities in Sub-Saharan Africa

    Neutralization and Attenuation of Metal Species in Acid Mine Drainage and Mine Leachates Using Magnesite: a Batch Experimental Approach

    Get PDF
    Abstract This paper evaluates the potential application of amorphous magnesite for remediation of Acid Mine Drainage (AMD). Magnesite was mixed with simulated AMD at specific S/L ratios and agitated in an orbital shaker and its capacity to remove metals and neutralize the acidity assessed over time. XRF analysis showed that magnesite contains MgO (88.54 %) as the major element. XRD revealed that magnesite is amorphous and contains periclase as major mineral phase. Results indicate that contact of AMD with magnesite leads to an increase in pH (pH≥10), and a reduction in EC, TDS and metal concentration to below DWAF guidelines. PHREEQC geochemical modeling predicted precipitation of Al, Fe, Mn, Mg bearing mineral phases could be responsible for attenuation of most metal species. However a high proportion of alkali and alkaline earth metals remained in the treated water which might require post treatment polishing

    Application of cryptocrystalline magnesite-bentonite clay hybrid for defluoridation of underground water resources: implication for point of use treatment

    No full text
    A new synthesis method was established to fabricate a nanocomposite material comprising of cryptocrystalline magnesite and bentonite clay that has high adsorption capacity for ionic pollutants. To synthesize the composite at 1:1 weight (g): weight (g) ratio, a vibratory ball mill was used. Batch adsorption experiments were carried out to determine optimum conditions for fluoride adsorption. Parameters optimized included: time, dosage, concentration and pH. Optimum conditions for defluoridation were found to be 30 min of agitation, 0.5 g of dosage, 0.5:100 solid to liquid (S/L) ratios and 25 mg L−1 of initial fluoride ions. Fluoride removal was independent of pH. The adsorption kinetics and isotherms were well fitted by pseudo-second-order and Langmuir models, respectively, indicating chemical and monolayer adsorption. Findings illustrated that the newly synthesized adsorbent was a promising adsorbent for the environmental pollution clean-up of excess fluoride in underground water and it can be used as a point source treatment technology in rural areas of South Africa and other developing countries
    corecore