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Abstract 18 
Phosphate and nitrate enrichment largely impair aquatic ecosystem functions and services, 19 

thus comprising an emerging problem of environmental concern. The problem pertains to 20 

developing countries where phosphate and nitrate discharge to surface water is on the rise due 21 
to a rapid growth in population. Herein, these pollutants (phosphate and ammonia) were 22 
removed from real municipal wastewater using a simple, fast, and cost-effective process. 23 

Raw cryptocrystalline magnesite, a mineral abundant in South Africa, was simply milled and 24 
calcined (mechano-thermo processing) in order to produce the activated magnesite (feed). 25 

The feed was then used in batch processing for pollutants adsorption and precipitation from 26 

real wastewater. The process was optimised by varying the treatment or contact time, feed 27 

dosage, concentration, pH, and temperature. The feed and product mineral (produced sludge) 28 
were characterised using X-ray Diffraction (XRD), field emission scanning electron 29 

microscopy (FESEM) compatible with energy dispersive spectroscopy (EDS), and Fourier 30 
Transform Infrared Spectrometer (FTIR). It was identified that the optimal conditions 31 
differed for each pollutant, highlighting the importance of tailoring the process to fit the local 32 

wastewater characteristics and as part of a treatment train system. Specifically, maximum P 33 
removal was achieved after 5 min of mixing, using 1 g L

-1
 of feed, 123 mg L

-1
 initial 34 

phosphate concentration, pH 8 – 10, and was not affected by temperature variations; whereas, 35 

for ammonia removal, optimal conditions were 180 min, 16 g L
-1

 feed dosage, 80 mg L
-1

 36 
initial concentration, pH 10 and temperature > 45 °C. The optimal conditions for the removal 37 

of both pollutants from real wastewater were 30 min, 8 g L
-1

 dosage, 7.5 pH, 35 
o
C. 38 

Furthermore, Mg and Ca concentration was found to influence the process. Reduction in total 39 

dissolved solids and electrical conductivity suggest an attenuation of chemical species. 40 
Characterisation revealed that the product mineral obtained under the optimal conditions for 41 
pollutants removal is rich in quartz, periclase, brucite, calcite, magnesite, and struvite. This 42 

was further supported by the FTIR results, which indicated the presence of Mg-O, PO4
3−, N-H 43 

and –OH stretches. In addition, the EDS verified the presence of Mg, Ca and P in product 44 
mineral. Results are suggestive of the high efficiency of the mechano-thermo activated 45 
magnesite treatment process for P and N removal and struvite crystallization. Thus, this 46 
technology could valorise municipal wastewater effluents and open new horizons for the 47 

                                                           
*Corresponding author: sfoteinis@gmail.com 

mailto:VMasindi@csir.co.za
mailto:masindivhahangwele@gmail.com
mailto:sfoteinis@gmail.com


2 
 

effective and sustainable management of wastewater effluents, since struvite can replace the 48 

mined phosphate fertilizers, which are rapidly depleting, in the agriculture industry. 49 

Keywords: Mechano-thermo treatment; Pre-treated magnesite; Phosphorus; Nitrogen; 50 
municipal effluents; magnesium ammonium phosphate (struvite), sustainable 51 

 52 

1 Introduction 53 

Nowadays, research has focused on identifying feasible and practical approaches to manage 54 

high levels of phosphate and ammonia contained in wastewater streams, especially in 55 

developing countries where wastewater could be poorly treated. A wide range of 56 

technologies, based on different techniques and mechanisms, have been developed and 57 

explored, with biological processes, adsorption, filtration, bio-sorption, phytoremediation and 58 

crystallisation being popular for phosphate and ammonia removal from wastewater (Li et al., 59 

2017; Peng et al., 2018; Satoshi et al., 2013). Adsorption has been used to remove phosphate 60 

and ammonia from wastewater, typically at bench and semi-industrial scale using clay 61 

minerals, metals and their composites, while filtration techniques have been explored as well 62 

(Goh et al., 2008; Huang et al., 2017; Satoshi et al., 2013; Yagi and Fukushi, 2012; Zulfiqar 63 

et al., 2014). Adsorption followed by crystals settling is particularly popular (Li et al., 2015; 64 

Li et al., 2017), with Ca
2+

 or Mg
2+

 based materials being typically used as precursors (Li et 65 

al., 2017; Peng et al., 2018; Stolzenburg et al., 2015). Other adsorbents include elements that 66 

have high affinity to phosphate and ammonia, mainly trivalent metals, such as Fe
3+

 and Al
3+

, 67 

which have the added benefit of regeneration (Benyoucef and Amrani, 2012; Chiban et al., 68 

2012; Deng et al., 2016; Egle et al., 2016; Gao et al., 2018; Goh et al., 2008).  69 

South Africa is well-endowed with cryptocrystalline magnesite, which makes it a perfect 70 

candidate material for sustainable wastewater treatment and phosphate and ammonia removal 71 

(Magagane et al., 2019). This material is rich in Mg and it is well established that treating 72 

wastewater with Mg
2+

 based minerals can result to the formation of magnesium ammonium 73 

phosphate (struvite), which has a number of industrial applications (Bayuseno and Schmahl, 74 

2018; Kozik et al., 2014; Stolzenburg et al., 2015; Sutiyono et al., 2016; Wang et al., 2017); 75 

albeit its production depends on a number of factors such as treatment or contact time, 76 

dosage, pH, and temperature (Li et al., 2017). A number of salts that bear Mg
2+

 ions have 77 

been used for struvite crystallisation, including MgCl2, Mg (OH)2 and MgO (Peng et al., 78 

2018; Stolzenburg et al., 2015; Wang et al., 2017); however, these are mainly commercially 79 
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available salts, typically associated with high manufacturing costs which hinders the 80 

commercial application of the process (Muhmood et al., 2019). 81 

For the case of South Africa, a developing country, a low cost and easily accessible 82 

replacement Mg source is required to make the process commercially attractive. Due to its 83 

high Mg content, amorphous and cryptocrystalline magnesite could be a possible source of 84 

Mg
2+

 and Ca
2+

 for the removal of phosphate and ammonia from aqueous matrices. These 85 

materials have been explored for mine water treatment and the management of other 86 

contaminants (Masindi, 2017; Masindi et al., 2016a; Masindi et al., 2018a; Masindi et al., 87 

2018b; Masindi et al., 2016b). Specifically, Masindi et al. (2016a) highlighted that 88 

cryptocrystalline magnesite, and its pre-treated derivative (Magagane et al., 2019), are 89 

characterised of Mg, Ca, Fe and Si sandwiched together, hence giving it an up-hand due to 90 

hybrid properties therein. The mineral phases can also aid in the removal of phosphate and 91 

ammonia from wastewater, eventually leading to the formation of struvite. It dould be noted 92 

tha the precipitation of struvite from wastewater streams is gaining the attention of the 93 

scientific community due to its potential for phosphorus recovering for fertilization (Yan and 94 

Shih, 2016), and particularly owing to the fact that phosphate rock, a non-renewable resource, 95 

is predicted to be depleted within the next 100 years (Li et al., 2019). Furthermore, apart from 96 

calcium and magnesium, (Torzewska and Różalski, 2015) noted that certain bacteria, such as 97 

the genus Proteus, can also play a role in inducing struvite crystallization. (Wąsik et al., 98 

2017) also noted that coliform bacteria, in the presence of magnesium and calcium ions, 99 

among others, can created suitable conditions for the formation of struvite crystals. (Yan and 100 

Shih, 2016) studied the effects of calcium and ferric ions on struvite precipitation, while (Liu 101 

and Wang, 2019) noted that wastewater with the Ca/Mg ratio above 1/2 is not suitable for 102 

phosphorus recovery, due to the low proportion of struvite recovery. Finally, Li et al. (2019) 103 

reviewed the key aspects for struvite process design and development, the research trends, 104 

product application and process economics. 105 

Herein, based on preliminary results of our group (Mavhungu et al., 2018), we 106 

comprehensively examine the feasibility of South African pre-treated magnesite, rather than 107 

commercial salts, for phosphate and ammonia removal from real wastewater. This study also 108 

sheds light on the mechanisms governing the removal of pollutants from aquatic matrices 109 

through struvite precipitation. Furthermore, struvite, a process co-product, has an economic 110 

value, since if recovered could be suitable for reuse in agriculture (Taddeo et al., 2018). 111 
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Therefore, its recovery could both reduce the cost and environmental impact of the 112 

wastewater treatment process, which will be examined in future works of our group. 113 

 114 

2 Materials and methods 115 

2.1 Wastewater and raw cryptocrystalline magnesite collection 116 

Real untreated wastewater, rich in phosphate and ammonia, was collected from a municipal 117 

wastewater treatment facility in Pretoria, South Africa. The treatment facility receives 118 

wastewater from a number of activities from the surrounding area. High-density polyethylene 119 

(HDPE) wide-mouth bottles were used for sample collection. Solids and debris were removed 120 

by filtration, using Macherey-Nagel filter papers (MN 615. Ø125mm), and the samples were 121 

used immediately thereafter. In the context of this work, the wastewater was diluted, as 122 

required, to reach the desired phosphate and ammonia concentration. Raw cryptocrystalline 123 

magnesite samples were collected from an abandoned magnesite mine in Folovhodwe, 124 

Limpopo Province, South Africa. 125 

2.2 Production of the mechano-thermo activated magnesite 126 

The collected raw cryptocrystalline magnesite was first milled into a fine powder, using a 127 

vibratory ball miller at 500 rpm for 15 min. Thence, the fine powder was calcined at 1,000 128 

°C, using a furnace as reported in our previous study (Magagane et al., 2019). Finally, the 129 

samples were milled again, under the same conditions, and then sieved through 32 microns 130 

perforated sieve. The thermo-mechano (i.e. calcined and milled) activated magnesite samples, 131 

feed thereafter, were then stored in zip-lock plastic bags until utilisation for simultaneous 132 

adsorption of phosphate and ammonia.  133 

2.3 Quality control and quality assurance 134 

Experiments were performed in triplicate, giving similar results, and are reported as mean 135 

average values. For quality control and assurance, ISO-accredited laboratories and NIST 136 

standards were used for sample analyses. To ensure reliable, accurate, and high precision 137 

results inter-laboratory analysis was also undertaken, i.e. for validation and verification 138 

purposes. 139 

2.4 Process optimisation 140 
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For process optimization and to obtain an in-depth understanding of the factors influencing 141 

phosphate and ammonia removal, a number of operational parameters were evaluated. These 142 

include: i) contact time (i.e. mixing duration of the feed-wastewater solution); ii) feed dosage 143 

(i.e. the amount of mechano-thermo activated magnesite used during treatment); iii) chemical 144 

species concentration (i.e. phosphate and ammonia initial concertation); iv) pH; and v) 145 

temperature. Experiments were performed in 500 mL volumetric flasks (low-form beaker), 146 

stirred at 500 rpm using an overhead stirrer. To gain insight, the one-factor-at-a-time (OFAT) 147 

method was used, i.e. each time one parameter was varied while the others were fixed, as 148 

shown in Table 1.  149 

Table 1: Process parameters assayed for the optimisation of phosphate and ammonia removal 150 

from wastewater. 151 

Parameter Units Data variation range 

Contact time  minutes (min) 1; 5; 10; 30; 60;120; 150; 180; 240; and 

300 

Dosage  grams* 0.1; 0.5; 1; 2; 3; 4; 5; 8; and 10 

Concentration  mg L
-1

 or ppm 2; 4; 8; 12; 16; 21; 33; 41; 82; and 123 

pH of solution N/A 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12  

Temperature  °C 35; 45; 55; 65; and 75  

*per 500 mL of wastewater 

 152 

The effect of the initial phosphate and ammonia concentration was studied by diluting the 153 

raw municipal wastewater to the desired concentration (Table 1). The pH was adjusted using 154 

0.1 M NaOH and/or 0.1 M HCl, as required. A 4-decimal place analytical balance was used 155 

to calculate feed dosages. Finally, the temperature was regulated using a hotplate stirrer and 156 

the effect of contact time was examined by agitating the wastewater-feed solution at the time 157 

intervals specified in Table1. 158 

2.5 Percentage removal  159 

The amount of phosphate and ammonia removed from municipal wastewater was estimated 160 

using equation (1), i.e.: 161 

% Removal =
C0−Ce

C0
× 100         (1) 162 
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where C0 is the initial phosphate or ammonia concentration and Ce is the final concentration, 163 

after treatment, of phosphate or ammonia. 164 

2.6 Analytical techniques  165 

The pH, Electrical conductivity (EC) and Total Dissolved Solids (TDS) were monitored 166 

using a multi-parameter probe (HANNA instrument, HI9828). Chemical species 167 

concentrations were determined by means of inductively coupled plasma mass spectrometry 168 

(ICP-MS) (7500ce, Agilent, Alpharetta, GA, USA). The raw magnesite, the feed (mechano-169 

thermo activated magnesite) and product mineral (i.e. the produced sludge that contains 170 

struvite) properties were examined by the analytical techniques detailed in Table 2. 171 

Table 2: The equipment used for characterisation of feed and product mineral. 172 

Parameter Analytical Technique Model 

Mineralogical 

properties 

X-ray Diffraction (XRD) PANalytical X’Pert PRO-diffractometer 

equipped with Philips PW 1710 Diffractometer 

with graphite secondary monochromatic 

source 

Functional 

groups 

Fourier Transform 

Infrared Spectrometer 

(FTIR) 

 

 

Perkin-Elmer Spectrum 100 Fourier Transform 

Infrared Spectrometer (FTIR) equipped with 

Perkin-Elmer Precisely Universal Attenuated 

Total Reflectance (ATR) sampling accessory 

with a diamond crystal. 

Morphology, 

Mapping and 

elements 

Field Emission Scanning 

Electron Microscope 

(FESEM) equipped with 

Energy-dispersive X-ray 

spectroscopy (EDS)  

Auriga Cobra FIB-FESEM, Carl Zeiss FE-

SEM, Germany 

3 Results and discussions 173 

3.1 Characterisation of the raw magnesite, feed, and product mineral 174 

3.1.1 Mineralogical analysis 175 
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The mineralogical properties of the raw magnesite, the feed (mechano-thermo activated 176 

magnesite) and product mineral (produced sludge) were estimated by means of X-ray 177 

Diffraction (XRD) and are shown in Figure 1. 178 

 179 

Figure 1: The mineralogical properties of raw magnesite, feed, and product mineral. 180 

As shown in Figure 1 there is a change in mineral phases after calcination. Initially, it was 181 

observed that the raw magnesite contains pure magnesium carbonate. However, after 182 

calcination, new phases were observed in the feed and these include periclase, brucite, and 183 

calcite, in addition to amorphous fractions. Finally, the produced sludge (product mineral) 184 

was found to contain struvite, periclase, and brucite. This is an indication that phosphate and 185 

ammonia are adsorbed by the feed and form struvite, as denoted in equation (2): 186 

Mg2+ +  NH4
+ + PO4

3− +  6H2O →  MgNH4PO4. 6H2O    (2) 187 

Similar results were reported by Sutiyono et al. (2016). Furthermore, the obtained peaks at 188 

21, 23, 31, and 34 2theta degrees are in good agreement with those reported by Li et al. 189 

(2017) and Gao et al. (2018). This confirms that the reaction between the feed and the 190 

wastewater leads to the formation of magnesium ammonium phosphate (struvite). It should 191 
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be noted that since the activated magnesite (feed) reacts with the wastewater to produce 192 

struvite, it cannot be regenerated or recycled in the process. The other components observed, 193 

such as the periclase and brucite, could be also beneficial since it is envisaged that the 194 

product mineral (struvite) would be used for agriculture purposes. Finally, the presence of 195 

Mg and Ca in the feed contributes towards increasing the pH value of the wastewater and 196 

generating Mg2+ and Ca2+. This is shown in eq. (3) – (4): 197 

MgO + H2O →  Mg2+  +  2OH−        (3) 198 

CaO + H2O →  Ca2+  +  2OH−        (4) 199 

Mg2+ will then scavenge the NH4
+ and PO4

3− to form a complex, as denoted in equation 2. 200 

3.1.2 Morphological properties 201 

The morphological properties of the feed and product mineral were measured by a Field 202 

Emission Scanning Electron Microscope (FESEM). The clear, ultra-high resolution and low 203 

electrostatically distorted images obtained by the FESEM are shown in Figure 2. 204 

 205 
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Figure 2: The morphological properties of the feed (left-hand-side) and product mineral 206 

(right-hand-side) obtained by FESEM at 1 µm (A and B), 100 nm (C and D), and 200 nm (E 207 

and F). 208 

From the comparative analysis between the feed’s and the product mineral’s morphological 209 

properties shown in Figure 2, it is evident that the feed contains nano-sheets, with hexagonal 210 

structures uniformly distributed across the surface. Contrary, the product mineral portrayed 211 

nanosheet-like structures with reduced size. Therefore, the results are suggestive of a possible 212 

dissolution of the feed material or, more likely, the formation of new mineral phases, as will 213 

be discussed further down. These results are also consistent with those reported by Heraldy et 214 

al. (2017). 215 

3.1.3 Elemental composition of feed and product mineral 216 

As mentioned above, the FESEM was equipped with an Energy-dispersive X-ray 217 

spectroscopy (EDS) detector, which was used towards identifying the elemental composition 218 

of the feed and of the product mineral. 219 

 220 
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Figure 3: Elemental composition of the: (a) feed and (b) product mineral. 221 

Specifically, the feed material (mechano-thermo activated magnesite) was found to contain 222 

Mg, O, and C, in addition to traces of Ca, and Si (Figure 3). This composition will 223 

accommodate an increase in the pH of the wastewater-feed mixture. Furthermore, as 224 

discussed above, Mg contributes to the removal of NH4
+ and PO4

3− from wastewater, which is 225 

the main target of this work. Finally, the product mineral (Figure 3b) contains Mg, O, and C, 226 

as major components, while traces of Ca and P were also observed. This, along with the 227 

observed water quality of the treated water (Table B1 Appendix), suggests that P has been 228 

removed from wastewater and fixed in the product mineral (sludge). 229 

3.1.4 Elemental composition analysis 230 

Here the FESEM and the corresponding EDS elemental mapping images for the feed and 231 

product mineral are given and discussed, as to gain an in-depth understanding and verify or 232 

refute the elemental composition obtained by the EDS element analysis. Specifically, EDS 233 

element analysis revealed the existence of Mg, O, Ca, and Si, in the feed and Mg, O, K, P, in 234 

the product mineral and therefore FESEM-EDS elemental mapping will focus on them. In 235 

Figure 4i the FESEM-EDS layered images of the feed material and for Mg, O, Ca, and Si are 236 

shown. 237 

The elemental mapping confirmed the existence of Mg, O, Ca, and Si in the feed, which was 238 

identified in the elemental composition of feed and product mineral section. These elements 239 

contribute to the removal of phosphate and ammonia from wastewater, while both Mg and Ca 240 

contribute to an increase of the pH, as discussed in the mineralogical analysis section. 241 

Furthermore, the identified elemental composition of product mineral was also confirmed by 242 

the FESEM-EDS imagery, as shown in Figure 4ii. Specifically, the elemental mapping of the 243 

product mineral revealed that indeed the product mineral contains Mg, O, Ca and P, as shown 244 

in Figure 4ii (b), (c), (d), and (e), respectively. This is an indication that Si was released as 245 

the pH was increasing and Mg, Ca and P formed struvite, hence achieving a high removal 246 

capacity as will be discussed further down. 247 

 248 
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 249 

Figure 4: (i) The FESEM image of the: (a) feed material and the FESEM-EDS layered 250 

images of the feed material for: (b) Mg, (c) O, (d) Ca, and (e) Si; and (ii) the FESEM image 251 

for the: (a) product mineral, and the FESEM-EDS layered images of the feed material for (b) 252 

Mg, (c) O, (d) Ca, and (e) P. 253 

3.1.5 Fourier transform infrared spectroscopy analysis 254 

The results of the Fourier transform infrared spectroscopy (FTIR) analysis, both for the feed 255 

and the product mineral are shown in Figure 5. Furthermore, the identified functional groups 256 

and wavenumber of feed and product mineral are given. 257 
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 258 

Figure 5: The FTIR results for the feed and product mineral. 259 

The wavenumbers of the peaks of the feed and the product mineral (Figure 5) were compared 260 

with those obtained from the literature (Heraldy et al., 2017; Magagane et al., 2019) and were 261 

found to be in good agreement. Furthermore, the FTIR spectrum of the feed confirms the 262 

existence of water hydration, Mg-O metal-oxygen bond, and carbonate. This corroborates the 263 

XRD results and is an indication of the presence of periclase and traces of brucite in the feed. 264 

Furthermore, in the FTIR spectrum of the feed, the presence of carbonate was identified, 265 

which was expected since it is a residue of the calcination process. Finally, the FTIR 266 

spectrum of the product mineral was observed to contain water hydration, Mg-O metal-267 

oxygen bond, N-H bond, and PO4
3−, hence confirming that struvite has been formed. Overall, 268 

the obtained results are in agreement with those reported in the literature (Heraldy et al., 269 

2017) and further support the results obtained by the EDS and XRD analyses. 270 

3.2 Operational parameters optimisation 271 

3.2.1 Variation of pollutants removal as a function of contact time 272 

First the effect of contact time, i.e. mixing duration, on total dissolved solids (TDS) removal 273 

was examined and then on phosphate and ammonia removal. As mentioned in Table 1a wide 274 

spectrum of mixing durations, i.e. 1, 5, 10, 30, 60, 120, 150, 180, 240, and 300 min, was 275 
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considered. A sharp decrease in the TDS level/concentration was observed from 0 to 5 min 276 

(Figure A1, in the appendix). Thereafter, only trivial fluctuations were observed with 277 

increasing contact time. This is a good indication that, in terms of TDS removal, the system 278 

reaches equilibrium within the first 5 min of contact time. 279 

Moreover, the percentage removal of the targeted pollutants under study, i.e. phosphate and 280 

ammonia, along with the measured level of calcium and magnesium, are shown in Figure A2 281 

in the appendix, and for the abovementioned contact times. A steep increase in the percentage 282 

removal of ammonia was observed during the first 10 min (~68 % removal). Then a decrease 283 

in the percentage removal is observed up to the contact time 120 min and thereafter the 284 

ammonia percentage removal increases up to the 300 min contact time (~76 % removal). 285 

Overall, it can be claimed that the optimal contact time is 180 min, where around 75 % of 286 

ammonia is removed, since thereafter ammonia is removed commenced to stabilize, hence 287 

suggesting that the reaction has reached equilibrium. On the other hand, the system is highly 288 

efficient at removing phosphate, since starting at 1 min, the phosphate removal is ~95 % and 289 

then maximized at 5 min (~98 %). Thereafter, it remained constant, with more than 98 % of 290 

phosphate being removed. This suggests that the system has reach equilibrium in phosphate 291 

removal at 5 min contact time. The abovementioned percentage removals are attributed to the 292 

reaction of the feed with phosphate and ammonia. A similar trend has been reported by Yagi 293 

and Fukushi (2012).  294 

Furthermore, the level of magnesium was observed to follow a somewhat similar pattern with 295 

the one observed in ammonia percentage removal, with a step increase in its concentration 296 

during the first 30 min, then a decrease at contact time 60 min, then an increase at contact 297 

time 90 min and thereafter it remains practically stable (Figure A2 in the appendix). On the 298 

other hand, the level of calcium increases at contact time 5 min, then it decreases and 299 

thereafter trivial fluctuations are observed.  300 

The above indicate that the reaction of Mg2+, Ca2+, NH4
+, and PO4

3− (see eq. 2) is leading to 301 

the formation of struvite. To afford the reaction adequate time, 5 min was taken as the 302 

optimum contact time for the removal of phosphate (more than 98 % is removed) and 180 303 

min was taken as the optimum time for the removal of ammonia (around 75 % of the 304 

ammonia content is removed). Furthermore, 5 min was considered as the ideal time for the 305 

synthesis of struvite using the mechano-thermo treated magnesite. Thus, this study attained a 306 

fast struvite formation time, compared to other studies in literature (Sutiyono et al., 2016). 307 

 308 



14 
 

3.2.2 Variation of pollutants removal as a function of feed dosage 309 

In this section the effect of feed dosage on TDS removal and on the removal of the targeted 310 

pollutants was examined by varying both the feed dosage (from 0.1 to 10 g). Three different 311 

contact times were examined, i.e. 10, 30, and 60 min, while the pollutants’ initial 312 

concentration (contact time 0 min) was also measured.  313 

Regarding TDS removal, it was found that its level/concentration is directly affected by the 314 

contact time and feed dosage (Figure A3, appendix). It appears that with increasing mixing 315 

time and dosage, TDS concetration decreases. Specifically, apart from the value for the 30 316 

min contact time and dosage 1 g per 500 ml (i.e. 2 g L
-1

) and the value for the 60 min contact 317 

time and dosage 5 g, where a small increase in the TDS level is observed compared to the 318 

previously measured value (see Figure A3, appendix), the pattern that was observed was that 319 

the regardless of the contact time the TDS level decreases with increasing feed dosage, until 320 

it is practically near-zero. To be more specific, for contact time 10, 30, and 60 min the TDS is 321 

practically near-zero (less than 5 mg L
-1

) when the dosage is equal or higher than 8 g, 3 g, 322 

and 8 g, respectively. Therefore, 30 min and 3 g (i.e. 6 g L
-1

) were observed to be the most 323 

efficient range for the reduction of TDS (Figure A3, appendix).  324 

Furthermore, the effectiveness of the process in removing the targeted pollutants was 325 

examined by correlating their percentage removal with varying feed dosages, as described in 326 

Table 1. The calcium and magnesium levels were also measured at 30 min contact time and 327 

for the examined feed dosages. It was observed that the process is very efficient in phosphate 328 

removal (percentage removal> 95 %) even at the lowest dosage, i.e. 0.1 g. For the 0.5 g feed 329 

dosage phosphate is practically removed (> 98.3 %) and thereafter remains constant (Figure 330 

A4, appendix). This indicates the high affinity of the feed material to phosphate and suggests 331 

that the system can operate efficiently even at very low feed dosages. For ammonia removal, 332 

a different pattern was observed. The system presents a steep increase in the percentage of 333 

ammonia removal from the 0.1 to 0.5 g feed dosage, thence the percentage removal decreases 334 

up to 5 g dosage, while a sharp increase in ammonia removal in is observed for higher values. 335 

The fluctuations in ammonia removal could be explained by the competition to reactive sites. 336 

At the same time, it is observed that the Ca level remained practically constant up to the 4 g 337 

feed dosage and thereafter it sharply increase with increasing feed dosage values. On the 338 

other hand, the Mg level is observed to decrease up until the 4 g feed dosage, with a sharp 339 

decrease observed between 3 g and 4 g, while for 4 g dosage values and higher the Mg level 340 
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is minuscule. This large reduction in the Mg level could be attributed to the increase in pH, 341 

traced back to increasing Ca concentration as discussed above, leading to the formation and 342 

precipitation of brucite. After the 4 g dosage, the Ca levels were observed to steeply increase 343 

with an increase in dosage. This could be attributed to possible dissolution of Ca and Mg 344 

from the feed into the wastewater and could be precursors for struvite synthesis. 345 

In light of the obtained results, it is concluded that with 0.5 g (i.e. 1 g L
-1

) dosage phosphate 346 

removal is optimized, whereas for ammonia removal optimisation 8 g (i.e. 16 g L
-1

) dosage is 347 

required. Results suggest the importance of tailoring the process parameters according to the 348 

characteristics and treatment quality requirements of the targeted wastewater effluent. Here, 3 349 

g (i.e. 6 g L
-1

) was considered as the optimum dosage for the removal of both phosphate and 350 

ammonia. 351 

3.2.3 Pollutant removal as a function of their initial concentration 352 

First, the effect of phosphate initial concentration on TDS removal was examined by varying 353 

its initial concentration from 2 to 123 mg L
-1

, as described in Table 1. An increase in TDS 354 

removal is observed with increasing initial phosphate concentration, while pH was observed 355 

to decrease and particularly a steep decrease is observed for phosphate values higher than 33 356 

mg L
-1

 (Figure A5, appendix). The high pH values observed with low phosphate 357 

concentration indicate the over-saturation of the system, with alkaline generating materials 358 

(MgO and CaO) elevating the pH. As the phosphate concentration increases, more chemical 359 

components are present in the system, which then react with the feed’s dissolved chemical 360 

components, hence a reduction in pH is observed. As a result, for initial phosphate 361 

concentrations between 2 to 21 mg L
-1

, the TDS level of the system (wastewater-feed) was 362 

higher than the initial TDS of the wastewater (Figure A5, appendix), however, in inverse 363 

proportion, i.e. as the initial phosphate concentration, and by extension the TDS level of the 364 

wastewater, was increasing (up to 33 mg L
-1

 phosphate concentration) the TDS level of the 365 

system was decreasing. This is an indication that the feed addition is increasing the TDS 366 

concentration due to the dissolution of chemical components in its matrices. Nevertheless, for 367 

phosphate initial concentration higher than 33 mg L
-1

, and up to 123 mg L
-1

, the TDS levels 368 

of the system were constantly lower than the initial TDS of the wastewater, in direct 369 

proportion, which indicate pollutants removal from the wastewater-feed system. 370 
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To gain insight into the process removal efficacy, the effect of both phosphate (concentration 371 

range 2 to 123 mg L
-1

) and ammonia (concentration range 4 to 239 mg L
-1

) initial 372 

concentration was examined, since it has been inferred that changes in the chemical 373 

composition of wastewater can affect the simultaneous recovery of both phosphate and 374 

ammonia (Muhmood et al., 2019). Results are shown in Figure 6. 375 

 376 

Figure 6: Variation in percentage removal of ammonia and phosphate with varying initial 377 

concentration (conditions: room temperature, 8 g of dosage in 500 mL, 30 min of mixing, and 378 

500 rpm mixing speed). 379 

As shown in Figure 6, pollutants removal was observed to decrease with an increase in their 380 

initial concentration, particularly in the case of ammonia. This is an indication that the feed’s 381 

precursors chemical compounds are getting depleted with an increase in pollutant 382 

concentration, thus leading to a reduction in their removal efficiency. It should be mentioned 383 

that the system is highly efficient in removing phosphate, as shown in the corresponding Y-384 

axis (left-hand-side) of Figure 6 (phosphate removal >99.80% for the concentration spectrum 385 

2 - 123 mg L
-1

 and with 16 g L
-1

 feed dosage). More specifically, when phosphate initial 386 

concentration is between 0 to 41 mg L
-1

, the system performance is optimised, with 100 % 387 

phosphate removal. For values higher than 41 mg L
-1

 the system’s removal efficiency appears 388 

to sharply reduces, nonetheless for practical applications it remains more or less constant 389 
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since for 82 mg L
-1

 initial concentration phosphate removal is 99.99 % and for the 123 mg L
-1

 390 

value phosphate removal is 99.84 %. 391 

On the other hand, ammonia removal is optimised for initial ammonia concentration in the 392 

range of 8 to 41 mg L
-1

, beyond that, the removal efficiency was observed to gradually 393 

decrease Specifically, for values 8 to 40 mg L
-1

 ammonia removal is totally reduces (100 % 394 

removal), then it start to decrease, with a sharp decrease in ammonia removal efficiency 395 

being observed for values higher than 80 mg L
-1

. In that regard, it can be inferred that 16 g L
-396 

1
 of mechano-thermo activated magnesite (feed) is sufficient to remove ≤ 123 and 80 mg L

-1
 397 

of phosphate and ammonia, respectively. Results also suggest that, as with all wastewater 398 

treatment methods, the proposed method could operate as part of a treatment train, for the 399 

efficient removal of both phosphate and particularly ammonia. 400 

3.2.4 Pollutants removal as a function of pH 401 

The effect of the pH on TDS, phosphate, and ammonia removal was examined by taking into 402 

account a wide spectrum of pH values, ranging from as low as 1 to as high as 12 (Table 1). 403 

The results for TDS are shown in Figure A6, in the appendix, where the initial and final (after 404 

treatment) pH level, along with the TDS level, are shown. It was observed that for pH values 405 

1 and 2 the TDS level is very low, even at contact time 0 min, and it becomes minuscule after 406 

10 min treatment (Figure A6, appendix). Furthermore, for pH values in the range of 3 to 8, 407 

TDS decreases with increasing pH, however, for pH values higher than 8 TDS increases with 408 

increasing pH values. This could be attributed to Mg precipitation from the aqueous system, 409 

hence making the system deficient of one of its main components. Nonetheless, for pH values 410 

higher than 10 the system is dominated by Ca ions, thus making them the best candidate for 411 

anions removal. Therefore, the treatment system was observed to be dependent on pH. The 412 

pH of the final solution was also observed to increase with an increase in initial pH. The most 413 

effective conditions were observed to be in the range of pH 8.5 to 10. This was also 414 

corroborated by examining the pollutants percentage removal as a function of pH, while also 415 

the Mg and Ca concentration/level were measured (Figure A7, appendix). 416 

Specifically, in Figure A7 it is observed that pollutants percentage removal increases with 417 

increasing pH in the range of 2 to 10. Thereafter, i.e. for pH values higher than 10, a large 418 

reduction in phosphate removal is observed, however, ammonia removal keeps increasing 419 

with increasing pH. More specifically, regarding the efficiency of the system in phosphate 420 
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removal, this was found to be very efficient since it was observed to be > 99% for pH values 421 

in the range of 1 to 10, however, it drops drastically for pH values between 10 to 12. 422 

Furthermore, the levels of Mg and Ca were also observed to decrease with an increase in pH, 423 

while at pH >10 they appeared to have been depleted and this is directly proportional to the 424 

level of phosphate in solution. A rapid decrease in Mg and Ca concentration was also 425 

observed for pH values 2 – 3, which is proportional to the levels of TDS in the system. As 426 

mentioned above the percentage of ammonia removal keeps increasing with increasing pH, 427 

however the observed steep increase in ammonia removal after the value 10 probably cannot 428 

be attributed to the mechano-thermo activated magnesite process per se, since pH > 10 429 

promote the loss of ammonia to air due to stripping (Sutiyono et al., 2016). Therefore, pH in 430 

the range 8 - 10 was observed to be suitable for the removal of both phosphate and ammonia 431 

(Figure A7, appendix). Similar results were reported by Stolzenburg et al. (2015).  432 

3.2.5 Variation of pollutants removal as a function of temperature 433 

The influence of temperature on TDS and pollutants removal efficiency is examined here. As 434 

detailed in Table 1, the examined temperature range is from 35 to 75 
o
C, while ambient pH 435 

was used (7.56 to 7.79). The effect of temperature on TDS removal was first examined and it 436 

is observed that TDS removal practically remains constant, regardless of temperature 437 

variations (Figure A8, appendix). However, some small variations in the TDS levels were 438 

observed, nonetheless these can be mainly attributed to pH changes. This suggested that TDS, 439 

and, by extension pollutants removal is practically independent of the temperature. As such, 440 

the results suggest that process scale-up could be conducted under South Africa’s temperate 441 

climate, to make this technology cost- and energy-efficient as well as environmentally 442 

friendly.  443 

To examine this assumption, the effect of temperature on pollutants removal was also 444 

examined (Figure A9, appendix). It was observed that phosphate removal was independent of 445 

temperature, nevertheless, at first glance, it appears that ammonia removal is somewhat 446 

dependent on temperature, since a steep increase in ammonia percentage removal is observed 447 

from the 35 °C to 45 °C and thereafter the percentage removal slightly improves with 448 

increasing temperature (Figure A9, appendix). However, this is most probably attributed to 449 

the fact that ammonia evaporates at temperatures higher than 30 °C, as reported by Sutiyono 450 

et al. (2016), and not to the mechano-thermo activated magnesite process per se. The Mg 451 

levels were observed to be dependent on temperature, as they rapidly decreased with an 452 
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increase in temperature, hence denoting a rapid reaction with the pollutants. This is an 453 

indication that struvite formation is endothermic, because it requires additional energy for 454 

optimal removal of struvite. Furthermore, the Ca levels were observed to gradually increase 455 

with an increase in temperature, hence offsetting the TDS of the defined system. In light of 456 

that, 55 °C appears to be the optimum temperature for pollutants, and particularly for 457 

ammonia, removal. However, for industrial deployment applications and to make this 458 

technology simpler to apply and energy friendly, and by extension commercially appealing, 459 

the system should be scaled up under South Africa’s temperate climate, rather than 55 °C 460 

temperature. We should also note here that in our future works we plan to assess the 461 

environmental footprint of the process, examining also the effect of additional energy and 462 

ammonia emissions when the process operates at 55 °C temperature. 463 

 464 

4 Treatment of municipal effluents at optimised conditions 465 

Finally, the real wastewater effluent was treated under the optimum conditions, identified in 466 

sections 3.2.1 – 3.2.5 (30 min and 4 g: 500 mL dosage, ambient temperature and pH). In 467 

Table B1 in the appendix, the main characteristics of the raw municipal wastewater used 468 

throughout this work, as well as the main characteristics of the treated effluent, under the 469 

identified optimumconditions, are reported. 470 

It can be inferred from Table B1 (appendix) that the optimised system can effectively remove 471 

pollutants from real municipal effluents, by means of a simple and easily accessible 472 

mechano-thermo treated cryptocrystalline magnesite technology. Specifically, the main 473 

pollutants under study, i.e. phosphate and ammonia, were drastically reduced, particularly 474 

phosphate which was practically removed. Furthermore, an increase in the pH, from 7.5 to 475 

10.8, indicates that a reaction took place between the feed (mechano-thermo activated 476 

magnesite) and the wastewater, leading to struvite formation. EC and TDS were also 477 

observed to decrease, which further support that there is a large attenuation of pollutants from 478 

the aqueous media. Specifically, sulphate was reduced from 150 to 40 mg L
-1

; phosphate was 479 

practically removed, from 120 to 0 mg L
-1

; whereas ammonia was reduced from 135 to 30 480 

mg L-1, hence suggesting struvite formation (Table B1, appendix). The levels of magnesium 481 

and calcium were also observed to have decreased significantly, which implies a possible co-482 

precipitation during the struvite formation. 483 
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5 Mechanisms governing pollutants removal 484 

Taking into account the abovementioned results, it appears that the removal of phosphate and 485 

ammonia from wastewater is mainly attributed to a combination of adsorption and 486 

precipitation. Specifically, adsorption precedes precipitation and then struvite crystallization, 487 

(Li et al., 2017) leading to the formation of a number of valuable substances, by the 488 

mechanisms shown below. Specifically, equations (5) – (9) depict the route for the formation 489 

of the final products, eventually leading to struvite formation: 490 

Mg/CaO + H2O →  Mg/Ca2+  +  2OH−       (5) 491 

5Ca2+ + 3HPO4
2− + OH−  = Ca5(PO4)3OH      (6) 492 

Ca2+ +  HPO4
2−  =  CaHPO4        (7) 493 

3Ca2+ +  2PO4
2−  =  Ca3(PO4)2       (8) 494 

Mg2+ +  HnPO4
n−3 + NH4

+ +  6H2O →  MgNH4PO4. 6H2O +  nH+  (9) 495 

where n = 0,1,2, etc., and it corresponds with the solution pH (Peng et al., 2018).  496 

Therefore, as is suggested by equations (5) – (9) the presence of Mg and Ca will lead to the 497 

effective treatment of the municipal effluents via crystallization of calcium phosphate and 498 

struvite synthesis process. Similar inferences were reported by Peng et al. (2018). Finally, it 499 

should be noted that this system cannot be purely defined by adsorption models, since the 500 

process is not reversible and it is not utterly a surface phenomenon, hence warranting its 501 

classification as a precipitation process that leads to a crystallization process.  502 

6 Conclusions 503 

Mechano-thermo treated cryptocrystalline magnesite (feed) was successfully employed for 504 

the removal of phosphate and ammonia, among other pollutants, from real municipal 505 

wastewater effluents. Operational parameters of the treatment process were assessed and the 506 

optimised parameters were observed to vary for phosphate (5 min of mixing, 0.5 g of feed 507 

dosage in 500 mL or 1 g L
-1

, 123 mg L
-1

 initial phosphate concentration, and pH 8 – 10) and 508 

for ammonia (180 min, 16 g L
-1

 dosage, 80 mg L
-1

 concentration, pH 10 and > 45°C) 509 

removal. The optimal conditions for the removal of both phosphate and ammonia were 510 

identified to be 30 min, 3 g L
-1

 dosage, ambient pH and temperature (7.5 pH and 35 
o
C 511 

respectively), and 120 and 135 mg L
-1

 initial phosphate and ammonia concentration, 512 
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respectively. The above suggest that the system can be part of a treatment train and/or be 513 

tailored according to the initial wastewater characteristics and the targeted water quality of 514 

the treated effluent.  515 

Furthermore, XRD confirmed the presence of struvite in the produced sludge, hence 516 

indicating that the removed pollutants react with the feed, leading to struvite formation, a 517 

valuable process co-product. This was further confirmed by the FT-IR analysis, which 518 

revealed the presence of N-H, Mg-O and P groups in the matrices of the product mineral 519 

(sludge). Struvite can be used as a replacement of mined phosphate fertilizers and it is also 520 

rich in nitrogen and magnesium, suggesting its production can valorise the wastewater 521 

treatment process and promote wastewater sustainable management. Furthermore, the water 522 

quality analyses revealed that the treated effluent is suitable for irrigation purposes, since 523 

most of the pollutants that may trigger algal growth have been effectively removed by the 524 

mechano-thermo activated magnesite driven system. Overall, with the proposed treatment 525 

process not only phosphate and ammonia are effectively removed, but struvite is also 526 

produced, thus leading to the valorisation of wastewater treatment process and opening new 527 

horizons for the effective and sustainable management of wastewater effluents. 528 
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Appendix A – Operational parameters optimisation figures 628 

 629 

 630 

 631 

Figure A1: Variation in TDS with an increase in contact time (conditions: 1 g: 100 mL S/L 632 

ratios, room temperature, 1 g of pre-treated magnesite and 500 rpm mixing speed). 633 
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 635 

Figure A2: The variation in percentage removal of ammonia and phosphate along with the 636 

levels of calcium and magnesium, with varying contact time (conditions: 1 g: 100 mL S/L 637 

ratios, room temperature, 1 g of pre-treated magnesite, and 500 rpm mixing speed). 638 
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 640 

Figure A3: Variation in TDS concentration with increasing feed dosage and contact time 641 

(conditions: room temperature, pH > 6.5, 500 rpm mixing speed, time : 10 to 60 min, 123 642 

ppm for phosphate, 80 ppm for ammonia, and room temperature)  643 
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 645 

Figure A4: Variation in percentage removal of ammonia and phosphate, along with the 646 

levels of calcium and magnesium, with varying feed dosage (conditions: 500 mL volume, 647 

room temperature, contact time 30 min and 500 rpm mixing speed). 648 
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 650 

Figure A5: Variation in TDS with a variation in phosphate initial concentration (conditions: 651 

room temperature, 30 min of mixing, pH > 6.5, 8 g: 500 mL, and 500 rpm mixing speed). 652 
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 655 

Figure A6: Influence of the initial pH level on TDS removal and on the final pH level 656 

(conditions: room temperature, feed dosage 8 g: 500 mL, 500 rpm mixing speed, 123 ppm for 657 

phosphate, and 80 ppm for ammonia). 658 
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 660 

Figure A7: Variation in percentage removal of ammonia and phosphate with varying pH and 661 

influence on Mg and Ca concentration (conditions: room temperature, 30 min contact time, 8 662 

g : 500 mL of dosage, ≤ 123 and 80 mg/L of phosphate and ammonia, and 500 rpm mixing 663 

speed). 664 
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 666 

Figure A8: Influence of temperature on TDS removal (conditions: 30 min, 8 g: 500 mL, 500 667 

rpm mixing speed, 123 ppm for phosphate, and 80 ppm for ammonia, pH between 7.56 to 668 

7.79). 669 
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 671 

Figure A9: Variation in percentage removal of phosphate and ammonia under different 672 

temperature gradients (conditions: 30 min, room temperature, 4 g: 500 mL of dosage, ≤ 123 673 

and 80 mg/L of phosphate and ammonia, and 500 rpm mixing speed). 674 
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Appendix B – Raw wastewater and treated effluent characteristics 678 

Table B1: Main characteristics of the raw wastewater and the treated effluent under optimal 679 

conditions, i.e. 30 min and 4 g: 500 mL dosage.  680 

Parameters Units Raw municipal effluents Treated effluent 

Aluminium  mg L
-1

 <0.00073 <0.00073 

Ammoniacal Nitrogen  mg L
-1

 135 30 

Antimony  mg L
-1

 0.0017 0.0011 

Arsenic  mg L
-1

 0.0035 0.0034 

Barium  mg L
-1

 0.011 0.0058 

Boron  mg L
-1

 <0.16 <0.16 

Cadmium  mg L
-1

 <0.0002 <0.0002 

Calcium mg L
-1

 200 0.2 

Chloride  mg L
-1

 76 81 

Chlorine (free)  mg L
-1

 0.07 0.04 

Chromium  mg L
-1

 0.00037 0.0013 

Colour  mg L
-1

 44 33 

Copper  mg L
-1

 0.0013 0.0007 

Cyanide total  mg L
-1

 <0.010 <0.010 

Electrical conductivity (EC)  mS/cm 200 120 

Flouride  mg L
-1

 <0.2 1.2 

Iron  mg L
-1

 0.015 <0.00088 

Lead  mg L
-1

 <0.00011 <0.00011 

Magnesium mg L
-1

 1600 0.5 

Manganese  mg L
-1

 0.022 <0.00025 

Mercury  mg L
-1

 <0.00045 <0.00045 

Monochloramine  mg L
-1

 0.03 <0.010 

Nickel  mg L
-1

 0.017 0.013 

Nitrate + Nitrite  mg L
-1

 1.5 1.3 

Nitrate Nitrogen  mg L
-1

 1.4 1.3 

Nitrite Nitrogen  mg L
-1

 <0.2 <0.2 

pH  N/A 7.5 10.82 

Phenols  mg L
-1

 <0.01 <0.01 

Phosphate mg L
-1

 120 <0.001 

Selenium  mg L
-1

 <0.0021 <0.0021 

Sodium  mg L
-1

 77 74 

Sulphate  mg L
-1

 150 40 

TDS  mg L
-1

 2900 756 

Turbidity  NTU 10 2.9 

Uranium  mg L
-1

 <0.00008 <0.00008 

Zinc  mg L
-1

 0.014 <0.00057 

 681 


