10 research outputs found

    Prevalence of mastitis in dairy cows from smallholder farms in Zimbabwe

    No full text
    A cross-sectional study was conducted to determine the prevalence of sub-clinical and clinical mastitis and the associated factors in cows from selected smallholder dairy farms in Zimbabwe. Physical examinations were conducted on all lactating cows for evidence of signs of clinical mastitis. Composite milk samples were collected from all lactating cows for bacterial culture and somatic cell counting. Cows were categorised as clinical if they exhibited clinical features of mastitis, or sub-clinical if no apparent signs were present but they had a positive bacterial isolation and a somatic cell count of at least 300 x 103 cells/mL. Farm-level factors were obtained through a structured questionnaire. The association of mastitis and animal- and herd-level factors were analysed using logistic regression. A total of 584 animals from 73 farms were tested. Overall, 21.1%(123/584) had mastitis, 16.3%(95/584) had sub-clinical mastitis and 4.8% (28/584) had clinical mastitis. Herd-level prevalence was 49.3%. Coagulase-negative staphylococci (27.6%), Escherichia coli (25.2%), Staphylococcus aureus(16.3%), Klebsiella spp. (15.5%) and Streptococcus spp. (1.6%) were the most common isolates. In individual cows, pure dairy herds (OR = 6.3) and dairy crosses (OR = 3.1) were more likely to have mastitis compared to Mashona cows. Farms that used pre-milking teat dipping were associated with reduced mastitis prevalence. Further research is needed on the prevalence of mastitis and a comparison of data for both smallholder and commercial dairy farms in all regions of Zimbabwe should be undertaken

    Seroprevalence and associated risk factors of Rift Valley fever in cattle and selected wildlife species at the livestock/wildlife interface areas of Gonarezhou National Park, Zimbabwe

    Get PDF
    A study was conducted to investigate the seroprevalence and associated risk factors of Rift Valley fever (RVF) infection in cattle and some selected wildlife species at selected interface areas at the periphery of the Great Limpopo Transfrontier Conservation Area in Zimbabwe. Three study sites were selected based on the type of livestock-wildlife interface: porous livestock-wildlife interface (unrestricted); non-porous livestock-wildlife interface (restricted by fencing) and livestock-wildlife non-interface (totally absent contact or control). Sera were collected from cattle aged >= 2 years representing both female and intact male. Sera were also collected from selected wild ungulates from Mabalauta (porous interface) and Chipinda Pools (non-interface) areas of the Gonarezhou National Park. Sera were tested for antibodies to Rift Valley fever virus (RVFV) using a competitive enzyme-linked immunosorbent assay (ELISA) test. AX2 test was used to assess differences between categories, and p 0.05). All impala and kudu samples tested negative. The overall seroprevalence in buffaloes was 11.7% (95% CI: 6.6-19.5), and there was no significant (p = 0.38) difference between the sites (Mabalauta, 4.4% [95% CI: 0.2-24] vs. Chipinda, 13.6% [95% CI: 7.6-23]). The overall seroprevalence in buffaloes (11.7%, 13/111) was significantly (p < 0.0001) higher than in cattle (1.7%, 17/1011). The results established the presence of RVFV in cattle and selected wildlife and that sylvatic infections may be present in buffalo populations. Further studies are required to investigate if the virus is circulating between cattle and wildlife
    corecore