270 research outputs found

    Evidence of very low metallicity and high ionization state in a strongly lensed, star-forming dwarf galaxy at z=3.417

    Get PDF
    We investigate the gas-phase metallicity and Lyman Continuum (LyC) escape fraction of a strongly gravitationally lensed, extreme emission-line galaxy at z=3.417, J1000+0221S, recently discovered by the CANDELS team. We derive ionization and metallicity sensitive emission-line ratios from H+K band LBT/LUCI medium resolution spectroscopy. J1000+0221S shows high ionization conditions, as evidenced by its enhanced [OIII]/[OII] and [OIII]/Hbeta ratios. Consistently, strong-line methods based on the available line ratios suggest that J1000+0221S is an extremely metal-poor galaxy, with a metallicity of 12+log(O/H) < 7.44 (< 5% solar), placing it among the most metal-poor star-forming galaxies at z > 3 discovered so far. In combination with its low stellar mass (2x10^8 Msun) and high star formation rate (5 Msun/yr), the metallicity of J1000+0221S is consistent with the extrapolation to low masses of the mass-metallicity relation traced by Lyman-break galaxies at z > 3, but it is 0.55 dex lower than predicted by the fundamental metallicity relation at z < 2.5. These observations suggest the picture of a rapidly growing galaxy, possibly fed by the massive accretion of pristine gas. Additionally, deep LBT/LBC in the UGR bands are used to derive a limit to the LyC escape fraction, thus allowing us to explore for the first time the regime of sub-L* galaxies at z > 3. We find a 1sigma upper limit to the escape fraction of 23%, which adds a new observational constraint to recent theoretical models predicting that sub-L* galaxies at high-z have high escape fractions and thus are the responsible for the reioization of the Universe.Comment: 5 pages, 3 figures and 1 table. Accepted for publication in ApJ Letter

    MUSE crowded field 3D spectroscopy in NGC 300 III. Characterizing extremely faint HII regions and diffuse ionized gas

    Get PDF
    There are known differences between the physical properties of HII and diffuse ionized gas (DIG), but most of the studied regions in the literature are relatively bright. We compiled a faint sample of 390 HII regions with median log⁥10Hα\log_{10}H\alpha=34.7 in the spiral galaxy NGC300, derived their physical properties in terms of metallicity, density, extinction, and kinematics, and performed a comparative analysis of the properties of the DIG. We used MUSE data of nine fields in NGC300, covering a galactocentric distance of zero to ~450 arcsec (~4 projected kpc), including spiral arm and inter-arm regions. We binned the data in dendrogram leaves and extracted all strong nebular emission lines. We identified HII and DIG regions and compared their electron densities, metallicity, extinction, and kinematic properties. We also tested the effectiveness of unsupervised machine-learning algorithms in distinguishing between the HII and DIG regions. The gas density in the HII and DIG regions is close to the low-density limit in all fields. The average velocity dispersion in the DIG is higher than in the HII regions, which can be explained by the DIG being 1.8 kK hotter than HII gas. The DIG manifests a lower ionization parameter than HII gas, and the DIG fractions vary between 15-77%, with strong evidence of a contribution by hot low-mass evolved stars and shocks to the DIG ionization. Most of the DIG is consistent with no extinction and an oxygen metallicity that is indistinguishable from that of the HII gas.We observe a flat metallicity profile in the central region, without a sign of a gradient. The differences between extremely faint HII and DIG regions follow the same trends and correlations as their much brighter cousins. HII and DIG are so heterogeneous, however, that the differences within each class are larger than the differences between the two classes.Comment: Accepted in A&

    The Spatial Extent and Distribution of Star Formation in 3D-HST Mergers at z~1.5

    Get PDF
    We present an analysis of the spatial distribution of star formation in a sample of 60 visually identified galaxy merger candidates at z>1. Our sample, drawn from the 3D-HST survey, is flux-limited and was selected to have high star formation rates based on fits of their broad-band, low spatial resolution spectral energy distributions. It includes plausible pre-merger (close pairs) and post-merger (single objects with tidal features) systems, with total stellar masses and star formation rates derived from multi-wavelength photometry. Here we use near-infrared slitless spectra from 3D-HST which produce Halpha or [OIII] emission line maps as proxies for star-formation maps. This provides a first comprehensive high-resolution, empirical picture of where star formation occurred in galaxy mergers at the epoch of peak cosmic star formation rate. We find that detectable star formation can occur in one or both galaxy centres, or in tidal tails. The most common case (58%) is that star formation is largely concentrated in a single, compact region, coincident with the centre of (one of) the merger components. No correlations between star formation morphology and redshift, total stellar mass, or star formation rate are found. A restricted set of hydrodynamical merger simulations between similarly massive and gas-rich objects implies that star formation should be detectable in both merger components, when the gas fractions of the individual components are the same. This suggests that z~1.5 mergers typically occur between galaxies whose gas fractions, masses, and/or star formation rates are distinctly different from one another.Comment: Accepted for publication in MNRAS, 16 pages, 10 figure

    Risk assessment for the spread of Serratia marcescens within dental-unit waterline systems using Vermamoeba vermiformis

    Get PDF
    Vermamoeba vermiformis is associated with the biofilm ecology of dental-unit waterlines (DUWLs). This study investigated whether V. vermiformis is able to act as a vector for potentially pathogenic bacteria and so aid their dispersal within DUWL systems. Clinical dental water was initially examined for Legionella species by inoculating it onto Legionella selective-medium plates. The molecular identity/profile of the glassy colonies obtained indicated none of these isolates were Legionella species. During this work bacterial colonies were identified as a non-pigmented Serratia marcescens. As the water was from a clinical DUWL which had been treated with Alpronℱ this prompted the question as to whether S. marcescens had developed resistance to the biocide. Exposure to Alpronℱ indicated that this dental biocide was effective, under laboratory conditions, against S. marcescens at up to 1x108 colony forming units/millilitre (cfu/ml). V. vermiformis was cultured for eight weeks on cells of S. marcescens and Escherichia coli. Subsequent electron microscopy showed that V. vermiformis grew equally well on S. marcescens and E. coli (p = 0.0001). Failure to detect the presence of S. marcescens within the encysted amoebae suggests that V. vermiformis is unlikely to act as a vector supporting the growth of this newly isolated, nosocomial bacterium

    SEOM clinical guidelines for the treatment of head and neck cancer (2017)

    Get PDF
    Head and neck cancer (HNC) is defined as malignant tumours located in the upper aerodigestive tract and represents 5% of oncologic cases in adults in Spain. More than 90% of these tumours have squamous histology. In an effort to incorporate evidence obtained since 2013 publication, Spanish Society of Medical Oncology (SEOM) presents an update of HNC diagnosis and treatment guideline. The eighth edition of TNM classification, published in January 2017, introduces important changes for p16-positive oropharyngeal tumours, for lip and oral cavity cancer and for N3 category. In addition, there are new data about induction chemotherapy and the role of immunotherapy in HNC

    The MUSE-Wide survey: Three-dimensional clustering analysis of Lyman-α\alpha emitters at 3.3<z<63.3<z<6

    Get PDF
    We present an analysis of the spatial clustering of 695 Lyα\alpha-emitting galaxies (LAE) in the MUSE-Wide survey. All objects have spectroscopically confirmed redshifts in the range 3.3<z<63.3<z<6. We employ the K-estimator of Adelberger et al. (2005), adapted and optimized for our sample. We also explore the standard two-point correlation function approach, which is however less suited for a pencil-beam survey such as ours. The results from both approaches are consistent. We parametrize the clustering properties by, (i) modelling the clustering signal with a power law (PL), and (ii) adopting a Halo Occupation Distribution (HOD) model. Applying HOD modeling, we infer a large-scale bias of bHOD=2.80−0.38+0.38b_{\rm{HOD}}=2.80^{+0.38}_{-0.38} at a median redshift of the number of galaxy pairs ⟹zpair⟩≃3.82\langle z_{\rm pair}\rangle\simeq3.82, while the PL analysis results in bPL=3.03−0.52+1.51b_{\rm{PL}}=3.03^{+1.51}_{-0.52} (r0=3.60−0.90+3.10  h−1r_0=3.60^{+3.10}_{-0.90}\;h^{-1}Mpc and Îł=1.30−0.45+0.36\gamma=1.30^{+0.36}_{-0.45}). The implied typical dark matter halo (DMH) mass is log⁥(MDMH/[h−1M⊙])=11.34−0.27+0.23\log(M_{\rm{DMH}}/[h^{-1}\rm{M}_\odot])=11.34^{+0.23}_{-0.27}. We study possible dependencies of the clustering signal on object properties by bisecting the sample into disjoint subsets, considering Lyα\alpha luminosity, UV absolute magnitude, Lyα\alpha equivalent width, and redshift as variables. We find a suggestive trend of more luminous Lyα\alpha emitters residing in more massive DMHs than their lower Lyα\alpha luminosity counterparts. We also compare our results to mock LAE catalogs based on a semi-analytic model of galaxy formation and find a stronger clustering signal than in our observed sample. By adopting a galaxy-conserving model we estimate that the LAEs in the MUSE-Wide survey will typically evolve into galaxies hosted by halos of log⁥(MDMH/[h−1M⊙])≈13.5\log(M_{\rm{DMH}}/[h^{-1}\rm{M}_\odot])\approx13.5 at redshift zero, suggesting that we observe the ancestors of present-day galaxy groups.Comment: Accepted for publication in A&A. 22 pages, 20 figures, 4 table

    Equivalent widths of Lyman α\alpha emitters in MUSE-Wide and MUSE-Deep

    Full text link
    The aim of this study is to better understand the connection between the Lyman α\alpha rest-frame equivalent width (EW0_0) and spectral properties as well as ultraviolet (UV) continuum morphology by obtaining reliable EW0_0 histograms for a statistical sample of galaxies and by assessing the fraction of objects with large equivalent widths. We used integral field spectroscopy from MUSE combined with broad-band data from the Hubble Space Telescope (HST) to measure EW0_0. We analysed the emission lines of 19201920 Lyman α\alpha emitters (LAEs) detected in the full MUSE-Wide (one hour exposure time) and MUSE-Deep (ten hour exposure time) surveys and found UV continuum counterparts in archival HST data. We fitted the UV continuum photometric images using the Galfit software to gain morphological information on the rest-UV emission and fitted the spectra obtained from MUSE to determine the double peak fraction, asymmetry, full-width at half maximum, and flux of the Lyman α\alpha line. The two surveys show different histograms of Lyman α\alpha EW0_0. In MUSE-Wide, 20%20\% of objects have EW0>240_0 > 240 \r{A}, while this fraction is only 11%11\% in MUSE-Deep and ≈16%\approx 16\% for the full sample. This includes objects without HST continuum counterparts (one-third of our sample), for which we give lower limits for EW0_0. The object with the highest securely measured EW0_0 has EW0=589±193_0=589 \pm 193 \r{A} (the highest lower limit being EW0=4464_0=4464 \r{A}). We investigate the connection between EW0_0 and Lyman α\alpha spectral or UV continuum morphological properties. The survey depth has to be taken into account when studying EW0_0 distributions. We find that in general, high EW0_0 objects can have a wide range of spectral and UV morphological properties, which might reflect that the underlying causes for high EW0_0 values are equally varied. (abridged)Comment: 28 pages, 21 + 1 figures, 7 + 1 tables, accepted for publication in A&

    Recovery and analysis of rest-frame UV emission lines in 2052 galaxies observed with MUSE at 1.5 < z < 6.4

    Get PDF
    Rest-frame ultraviolet (UV) emission lines probe electron densities, gas-phase abundances, metallicities, and ionization parameters of the emitting star-forming galaxies and their environments. The strongest main UV emission line, Lyα, has been instrumental in advancing the general knowledge of galaxy formation in the early universe. However, observing Lyα emission becomes increasingly challenging at z ≳ 6 when the neutral hydrogen fraction of the circumgalactic and intergalactic media increases. Secondary weaker UV emission lines provide important alternative methods for studying galaxy properties at high redshift. We present a large sample of rest-frame UV emission line sources at intermediate redshift for calibrating and exploring the connection between secondary UV lines and the emitting galaxies’ physical properties and their Lyα emission. The sample of 2052 emission line sources with 1.5 < z < 6.4 was collected from integral field data from the MUSE-Wide and MUSE-Deep surveys taken as part of Guaranteed Time Observations. The objects were selected through untargeted source detection (i.e., no preselection of sources as in dedicated spectroscopic campaigns) in the three-dimensional MUSE data cubes. We searched optimally extracted one-dimensional spectra of the full sample for UV emission features via emission line template matching, resulting in a sample of more than 100 rest-frame UV emission line detections. We show that the detection efficiency of (non-Lyα) UV emission lines increases with survey depth, and that the emission line strength of He IIλ1640 Å, [O III] λ1661 + O III] λ1666, and [Si III] λ1883 + Si III] λ1892 correlate with the strength of [C III] λ1907 + C III] λ1909. The rest-frame equivalent width (EW0) of [C III] λ1907 + C III] λ1909 is found to be roughly 0.22 ± 0.18 of EW0(Lyα). We measured the velocity offsets of resonant emission lines with respect to systemic tracers. For C IVλ1548 + C IVλ1551 we find that ΔvC IV â‰Č 250 km s−1, whereas ΔvLyα falls in the range of 250−500 km s−1 which is in agreement with previous results from the literature. The electron density ne measured from [Si III] λ1883 + Si III] λ1892 and [C III] λ1907 + C III] λ1909 line flux ratios is generally < 105 cm−3 and the gas-phase abundance is below solar at 12 + log10(O/H)≈8. Lastly, we used “PhotoIonization Model Probability Density Functions” to infer physical parameters of the full sample and individual systems based on photoionization model parameter grids and observational constraints from our UV emission line searches. This reveals that the UV line emitters generally have ionization parameter log10(U) ≈ −2.5 and metal mass fractions that scatter around Z ≈ 10−2, that is Z ≈ 0.66 Z⊙. Value-added catalogs of the full sample of MUSE objects studied in this work and a collection of UV line emitters from the literature are provided with this paper

    THE VLT LEGA-C spectroscopic survey:the physics of galaxies at a lookback time of 7 Gyr

    Get PDF
    The Large Early Galaxy Census (LEGA-C) is a Public Spectroscopic Survey of ~3200 K-band selected galaxies at redshifts z = 0.6 − 1.0 with stellar masses M∗>1010M⊙{M}_{*}\gt {10}^{10}\quad {M}_{\odot }, conducted with VIMOS on ESO's Very Large Telescope. The survey is embedded in the COSMOS field (R.A. = 10h00; decl.  =  +2  deg\mathrm{decl}.\;=\;+2\;\mathrm{deg}). The 20 hr long integrations produce high-signal-to-noise ratio continuum spectra that reveal ages, metallicities and velocity dispersions of the stellar populations. LEGA-C's unique combination of sample size and depth will enable us for the first time to map the stellar content at large lookback time, across galaxies of different types and star formation activity. Observations started in 2014 December and are planned to be completed by mid 2018, with early data releases of the spectra and value-added products. In this paper we present the science case, the observing strategy, an overview of the data reduction process and data products, and a first look at the relationship between galaxy structure and spectral properties, as it existed 7 Gyr ago
    • 

    corecore